

Adaptive Space-Time Isogeometric Analysis of Parabolic Evolution Problems

Svetlana Matculevich¹

Joint work with Ulrich Langer 1,2 and Sergey \mbox{Repin}^3

 ¹ RICAM, Linz, Austria
 ² JKU, Linz, Austria
 ³ St. Petersburg V.A. Steklov Institute of Mathematics, Russia; University of Jyväskylä, Finland

> AANMPDE 11 6-10.8.2018, Muu, Särkisaari, Finland

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 •••••••••
 •••••••
 ••••••
 ••••••
 ••••••
 ••••••
 ••••••
 •••••
 •••••
 •••••
 •••••
 ••••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 •••••
 ••••
 •••••
 ••••
 •••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••<

Outline

Introduction

- 1 model problem
- 2 a posteriori error estimates and the identity
- Globally stabilised space-time IgA schemes [Langer, Moore, and Neumüller, 2016]
- Locally stabilized space-time IgA schemes
- Adaptive space-time IgA schemes
- Numerical results
- Conclusions and roadmap

Intro: model problem and a posteriori error estimates and identity

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 vwww.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

Find $u: \overline{Q} \to \mathbb{R}$ satisfying the linear parabolic initial-boundary value problem (I-BVP)

$$\partial_t u - \operatorname{div}_x \nabla_x u = f \quad \text{in } Q,$$
$$u(x, 0) = u_0 \quad \text{on } \Sigma_0,$$
$$u = u_D = 0 \quad \text{on } \Sigma,$$

where ∂_t is the time derivative,

 $\Delta_x = \operatorname{div}_x \nabla_x$, div_x and ∇_x are

Laplace, divergence, and gradient operators in space, resp.,

 $u_0 \in H_0^1(\Sigma_0)$ is a given initial state,

Intro ○○○●○○○○					
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Prol	blems

Find $u: \overline{Q} \to \mathbb{R}$ satisfying the linear parabolic initial-boundary value problem (I-BVP)

$$\begin{array}{ll} \partial_t u - {\rm div}_x \nabla_x u = f & \text{in } Q, \\ u(x,0) = u_0 & \text{on } \Sigma_0, \\ u = u_D = 0 & \text{on } \Sigma, \end{array}$$

$$\begin{aligned} \Omega \subset \mathbb{R}^{d}, d &= \{1, 2, 3\}, T > 0\\ Q &:= \Omega \times (0, T)\\ \partial Q &:= \Sigma \cup \overline{\Sigma}_{0} \cup \overline{\Sigma}_{T}\\ \Sigma &:= \partial \Omega \times (0, T)\\ \mathbf{\Sigma}_{0} &:= \Omega \times \{0\}\\ \Sigma_{T} &:= \Omega \times \{T\} \end{aligned}$$

where ∂_t is the time derivative,

 $\Delta_x = \operatorname{div}_x \nabla_x$, div_x and ∇_x are

Laplace, divergence, and gradient operators in space, resp.,

 $u_0 \in H^1_0(\Sigma_0)$ is a given initial state,

Intro ○○○●○○○○					
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Prol	blems

Find $u: \overline{Q} \to \mathbb{R}$ satisfying the linear parabolic initial-boundary value problem (I-BVP)

$$\partial_t u - \operatorname{div}_x \nabla_x u = f \quad \text{in } Q,$$
$$u(x, 0) = u_0 \quad \text{on } \Sigma_0,$$
$$u = u_D = 0 \quad \text{on } \Sigma,$$

$$Q \subset \mathbb{R}^{d}, d = \{1, 2, 3\}, T > 0$$

$$Q := \Omega \times (0, T)$$

$$Q := \Sigma \cup \overline{\Sigma}_{0} \cup \overline{\Sigma}_{T}$$

$$\Sigma := \partial\Omega \times (0, T)$$

$$\Sigma_{0} := \Omega \times \{0\}$$

$$\Sigma_{T} := \Omega \times \{T\}$$

$$x_{1} \qquad \begin{bmatrix} 0, T \end{bmatrix}$$

$$x_{1} \qquad \begin{bmatrix} 0, T \end{bmatrix}$$

$$x_{2} \qquad x_{2}$$

where ∂_t is the time derivative,

 $\Delta_x = \operatorname{div}_x \nabla_x$, div_x and ∇_x are

Laplace, divergence, and gradient operators in space, resp.,

 $u_0 \in H_0^1(\Sigma_0)$ is a given initial state,

Intro ○○○●○○○○					
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Prol	blems

Find $u: \overline{Q} \to \mathbb{R}$ satisfying the linear parabolic initial-boundary value problem (I-BVP)

 $\partial_t u - \operatorname{div}_x \nabla_x u = f \quad \text{in } Q,$ $u(x, 0) = u_0 \quad \text{on } \Sigma_0,$ $u = u_D = 0 \quad \text{on } \Sigma,$

where ∂_t is the time derivative,

 $\Delta_x = \operatorname{div}_x \nabla_x$, div_x and ∇_x are

Laplace, divergence, and gradient operators in space, resp.,

 $u_0 \in H_0^1(\Sigma_0)$ is a given initial state,

Intro ○○○●○○○○					
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Prol	olems

Solvability results [Ladyzhenskaya, 1954]

Weak formulation:

Find $u \in H^{1,0}_{\mathbf{0}}(Q) := \left\{ v \in L^2(Q) \, : \, \nabla_{\times} v \in [L^2(Q)]^d, \, \mathbf{v} \big|_{\Sigma} = \mathbf{0} \right\}$ satisfying

 $(\star) \quad \mathsf{a}(u,w) = \ell(w), \quad \forall w \in H^{1,1}_{\mathbf{0},\overline{\mathbf{0}}}(Q) := \big\{ v \in H^{1,0}_{\mathbf{0}}(Q) \ : \ \partial_t v \in L^2(Q), \ v \big|_{\overline{\Sigma}_T} = 0 \big\},$

where

$$\begin{aligned} \mathsf{a}(u,w) &:= \left(\nabla_{\mathsf{x}} u, \nabla_{\mathsf{x}} w \right)_{Q} - \left(u, \partial_{t} w \right)_{Q}, \\ \ell(w) &:= \left(f, w \right)_{Q} + \left(u_{0}, w \right)_{\Sigma_{0}}. \end{aligned}$$

If $f \in L^{2,1}(Q_T) := \left\{ v \in L^1(Q) : \int_0^T \|v(\cdot, t)\|_{L^2(\Omega)} \, \mathrm{d}t < \infty \right\}$ and $u_0 \in L^2(\Omega)$, then there \exists a unique weak solution $u \in H_0^{1,0}(Q)$ of (\star) that also belongs to $V_0^{1,0} := C([0, T]; L^2(\Omega)) \cap H_0^{1,0}(Q).$

Solvability results [Ladyzhenskaya, 1954]

Weak formulation:

Find $u \in H^{1,0}_{\mathbf{0}}(Q) := \left\{ v \in L^2(Q) \, : \, \nabla_x v \in [L^2(Q)]^d, \, \mathbf{v} \big|_{\mathbf{\Sigma}} = \mathbf{0} \right\}$ satisfying

 $(\star) \quad \mathsf{a}(u,w) = \ell(w), \quad \forall w \in H^{1,1}_{0,\overline{0}}(Q) := \big\{ v \in H^{1,0}_{0}(Q) \ : \ \partial_t v \in L^2(Q), \ v \big|_{\overline{\Sigma}_T} = 0 \big\},$

where

$$\begin{aligned} \mathsf{a}(u,w) &:= \left(\nabla_{\mathsf{x}} u, \nabla_{\mathsf{x}} w \right)_{Q} - \left(u, \partial_{t} w \right)_{Q}, \\ \ell(w) &:= \left(f, w \right)_{Q} + \left(u_{0}, w \right)_{\Sigma_{0}}. \end{aligned}$$

If $f \in L^{2,1}(Q_T) := \left\{ v \in L^1(Q) : \int_0^T \|v(\cdot, t)\|_{L^2(\Omega)} \, \mathrm{d}t < \infty \right\}$ and $u_0 \in L^2(\Omega)$, then there \exists a unique weak solution $u \in H_0^{1,0}(Q)$ of (\star) that also belongs to $V_0^{1,0} := C([0, T]; L^2(\Omega)) \cap H_0^{1,0}(Q).$

Functional a posteriori error analysis [Repin, 2002]

For any $\mathbf{v} \in H_0^{1,1}(\mathbf{Q})$, $\mathbf{y} \in H^{\mathrm{div}_{\mathbf{x}},0}(\mathbf{Q}) := \{\mathbf{y} \in [L^2(\mathbf{Q})]^{d+1} : \mathrm{div}_{\mathbf{x}}\mathbf{y} \in L^2(\mathbf{Q})\}$, and $\beta > 0$, we have the following functional a posteriori error estimate:

$$||| u - v |||^2 := ||\nabla_x(u-v)||_Q^2 + || u - v ||_{\Sigma_T}^2 \leq \overline{\mathrm{M}}^{\mathrm{I},2}(v, \mathbf{y}; \beta)$$

with the majorant

$$\overline{\mathbf{M}}^{\mathrm{I},2}(\mathbf{v},\mathbf{y};\beta) := (1+\beta) \underbrace{\|\mathbf{y} - \nabla_{\mathbf{x}}\mathbf{v}\|_{Q}^{2}}_{\mathrm{dual term }\overline{\mathbf{m}}_{\mathrm{d}}^{\mathrm{I}}} + (1+\frac{1}{\beta}) C_{\mathrm{F}\Omega}^{2} \underbrace{\|f + \mathrm{div}_{\mathbf{x}}\mathbf{y} - \partial_{t}\mathbf{v}\|_{Q}^{2}}_{\mathrm{equilibration/reliability term }\overline{\mathbf{m}}_{\mathrm{eq}}^{\mathrm{I}}}$$

Main properties:

- universal for any v from admissible functional space,
- computable,
- reliable and realistic w.r.t. the error, i.e., $1 \leq l_{\text{eff}} = \frac{M}{\|u v\|}$ is close to 1,
- efficient for adaptive strategies $V_h
 ightarrow V_{h_{
 m ref}}$,
- in the space-time setting, allows fully-unstructured mesh adaptation.

Intro ○○○○●○○					
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Functional a posteriori error analysis [Repin, 2002]

For any $\mathbf{v} \in H_0^{1,1}(Q)$, $\mathbf{y} \in H^{\operatorname{div}_x,0}(Q) := \{\mathbf{y} \in [L^2(Q)]^{d+1} : \operatorname{div}_x \mathbf{y} \in L^2(Q)\}$, and $\beta > 0$, we have the following functional a posteriori error estimate:

$$||| u - v |||^2 := ||\nabla_x(u-v)||_Q^2 + || u - v ||_{\Sigma_T}^2 \leq \overline{\mathrm{M}}^{\mathrm{I},2}(v, \mathbf{y}; \beta)$$

with the majorant

$$\overline{\mathrm{M}}^{\mathrm{I},2}(\mathbf{v},\mathbf{y};\beta) := (1+\beta) \underbrace{\|\mathbf{y} - \nabla_{\mathsf{x}}\mathbf{v}\|_{Q}^{2}}_{\mathrm{dual \ term \ \overline{\mathrm{m}}_{\mathrm{d}}^{\mathrm{I}}}} + (1+\frac{1}{\beta}) C_{\mathrm{F}\Omega}^{2} \underbrace{\|f + \mathrm{div}_{\mathsf{x}}\mathbf{y} - \partial_{t}\mathbf{v}\|_{Q}^{2}}_{\mathrm{equilibration/reliability \ term \ \overline{\mathrm{m}}_{\mathrm{eq}}^{\mathrm{I}}}$$

Main properties:

- universal for any v from admissible functional space,
- computable,
- reliable and realistic w.r.t. the error, i.e., $1 \leq I_{\text{eff}} = \frac{M}{\|u v\|}$ is close to 1,
- efficient for adaptive strategies $V_h
 ightarrow V_{h_{
 m ref}}$,
- in the space-time setting, allows fully-unstructured mesh adaptation.

Intro ○○○○●○○					
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Stronger solvability results [Ladyzhenskaya, 1954]

If $f \in L^2(Q)$ and $u_0 \in H^1_0(\Omega)$, then the I-BVP is **uniquely solvable** in

$$H^{\Delta_{\times},1}_{\mathbf{0}}(Q) := \Big\{ u \in H^{1,1}_{\mathbf{0}}(Q) \, : \, \Delta_{\times} u \in L^{2}(Q) \Big\},$$

and u continuously depends on t in the $H_0^1(\Omega)$ -norm.

Maximal parabolic regularity for $\partial_t u - \operatorname{div}_X(A(x, t)\nabla_x u) = f$: for $f \in X = L^p((0, T); L^q(\Omega)), 1 < p, q < \infty$ and $u_0 = 0$ there $\exists C > 0$, such that

 $\|\partial_t u\|_X + \|\operatorname{div}_x(A(x,t)\nabla_x u)\|_X \leq C \|f\|_X.$

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 www.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

Stronger solvability results [Ladyzhenskaya, 1954]

If $f \in L^2(Q)$ and $u_0 \in H^1_0(\Omega)$, then the I-BVP is **uniquely solvable** in

$$H^{\Delta_{\times},1}_{\mathbf{0}}(Q) := \Big\{ u \in H^{1,1}_{\mathbf{0}}(Q) \, : \, \Delta_{\times} u \in L^{2}(Q) \Big\},$$

and *u* continuously depends on *t* in the $H_0^1(\Omega)$ -norm.

Maximal parabolic regularity for $\partial_t u - \operatorname{div}_X(A(x, t)\nabla_x u) = f$: for $f \in X = L^p((0, T); L^q(\Omega)), 1 < p, q < \infty$ and $u_0 = 0$ there $\exists C > 0$, such that

$$\|\partial_t u\|_X + \|\operatorname{div}_X(A(x,t)\nabla_x u)\|_X \leq C \|f\|_X.$$

Error identity [Anjam and Pauly, 2016]

For any $v \in H_0^{\Delta_x,1}(Q)$ approximating $u \in H_0^{\Delta_x,1}(Q)$, we have the error identity:

$$\|\Delta_{x}(u-v)\|_{Q}^{2} + \|\partial_{t}(u-v)\|_{Q}^{2} + \|\nabla_{x}(u-v)\|_{\Sigma_{T}}^{2}$$

=: $\||u-v||_{\mathcal{L},Q}^{2} \equiv \mathbb{E}d^{2}(v)$

$$:= \|\nabla_{x}(u_{0} - v)\|_{\Sigma_{0}}^{2} + \|\Delta_{x}v + f - \partial_{t}v\|_{Q}^{2}.$$

Note:

 \oplus reconstruction of $\mathbb{E}d^2(v)$ does not include time overhead

⊖ extra regularity u, v ∈ H₀^{Δ_x,1}(Q) is required (not practival for FEM) ⇒ but natural for IgA framework!

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 vwww.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

Error identity [Anjam and Pauly, 2016]

For any $v \in H_0^{\Delta_x,1}(Q)$ approximating $u \in H_0^{\Delta_x,1}(Q)$, we have the error identity:

$$\begin{split} \|\Delta_{x}(u-v)\|_{Q}^{2} + \|\partial_{t}(u-v)\|_{Q}^{2} + \|\nabla_{x}(u-v)\|_{\Sigma_{T}}^{2} \\ &=: \|\|u-v\|_{\mathcal{L},Q}^{2} \equiv \mathbb{E}d^{2}(v) \end{split}$$

$$:= \|\nabla_{x}(u_{0} - v)\|_{\Sigma_{0}}^{2} + \|\Delta_{x}v + f - \partial_{t}v\|_{Q}^{2}.$$

Note:

 \oplus reconstruction of $\mathbb{E}d^2(v)$ does not include time overhead

⊖ extra regularity u, v ∈ H₀^{Δx,1}(Q) is required (not practival for FEM) ⇒ but natural for IgA framework!

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 www.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

Error identity [Anjam and Pauly, 2016]

For any $v \in H_0^{\Delta_x,1}(Q)$ approximating $u \in H_0^{\Delta_x,1}(Q)$, we have the error identity:

$$\begin{split} \|\Delta_{\mathsf{x}}(u-v)\|_{Q}^{2} + \|\partial_{t}(u-v)\|_{Q}^{2} + \|\nabla_{\mathsf{x}}(u-v)\|_{\Sigma_{T}}^{2} \\ &=: \|\|u-v\|_{\mathcal{L},Q}^{2} \equiv \operatorname{I\!Ed}^{2}(v) \end{split}$$

$$:= \|\nabla_{x}(u_{0} - v)\|_{\Sigma_{0}}^{2} + \|\Delta_{x}v + f - \partial_{t}v\|_{Q}^{2}.$$

Note:

 \oplus reconstruction of ${\rm I\!Ed}^2(\nu)$ does not include time overhead

 \ominus extra regularity $u, v \in H_0^{\Delta_{\chi},1}(Q)$ is required (not practival for FEM) \Rightarrow but natural for IgA framework!

000000000000000000000000000000000000000		000000	000000000000000000000000000000000000000	00 00000000000
www.ricam.coaw.ac.at	Sustana Matsulovi	h Adaptivo Spaco Tim	IgA of Parabolic Evolution	Problems
www.ricam.oeaw.ac.at	Svetlana Matculevi	ch. Adaptive Space-Time	e IgA of Parabolic Evolution	Problems

Globally stabilized space-time IgA schemes

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 0000000
 0000000
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Conclusions
 Conconconclusions

IgA framework [Hughes et al., 2005]

Physical domain

Parametric domain

Geometrical mapping

- $$\begin{split} & Q \subset \mathbb{R}^{d+1} \text{ (single patch) is defined from} \\ & \widehat{Q} := (0,1)^{d+1} \text{ by the} \\ & \Phi : \widehat{Q} \to Q = \Phi(\widehat{Q}) \subset \mathbb{R}^{d+1}, \quad \Phi(\xi) = \sum_{i \in \mathcal{I}} \widehat{B}_{i,p}(\xi) \, \mathsf{P}_i, \\ & \quad \widehat{B}_{i,p}, i \in \mathcal{I}, \text{ are the B-splines, NURBS, THB-splines;} \end{split}$$
 - $\{\mathbf{P}_i\}_{i \in \mathcal{I}} \in \mathbb{R}^{d+1}$ are the control points.

Set of facets:

IgA framework [Hughes et al., 2005]

Physical domain

Parametric domain Geometrical mapping $\begin{array}{l} Q \subset \mathbb{R}^{d+1} \text{ (single patch) is defined from} \\ \widehat{Q} := (0,1)^{d+1} \text{ by the} \\ \Phi : \widehat{Q} \to Q = \Phi(\widehat{Q}) \subset \mathbb{R}^{d+1}, \quad \Phi(\xi) = \sum_{i \in \mathcal{I}} \widehat{B}_{i,p}(\xi) \, \mathsf{P}_i, \\ &\quad - \widehat{B}_{i,p}, i \in \mathcal{I}, \text{ are the B-splines, NURBS, THB-splines;} \\ &\quad - \{\mathsf{P}_i\}_{i \in \mathcal{I}} \in \mathbb{R}^{d+1} \text{ are the control points.} \end{array}$

Set of facets:

www.ricam.oeaw.ac.at

Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

Fundamentals [Bazilevs et. all., 2006], [Evans and Hughes, 2013]

Let $K \in \mathcal{K}_h$ and $h_K := \operatorname{diam}_{K \in \mathcal{K}_h}(K)$, then the *inverse inequalities*

$$\begin{split} \|v_h\|_{\partial K} &\leq C_{int,0} \ h_K^{-1/2} \|v_h\|_{\mathcal{K}} \text{ and } \|\nabla v_h\|_{\mathcal{K}} \leq C_{int,1} \ h_K^{-1} \|v_h\|_{\mathcal{K}} \\ \text{hold for all } v_h \in V_h := \operatorname{span} \left\{ \phi_{h,i} := \widehat{B}_{i,p} \circ \Phi^{-1} \right\}_{i \in \mathcal{I}}, \text{ where } C_{int,0}, \ C_{int,1} > 0 \text{ are constants independent of } \mathcal{K}. \end{split}$$

Let $K \in \mathcal{K}_h$, then the *scaled trace inequality*

 $\|v\|_{\partial K} \leq C_{tr} h_{K}^{-1/2} (\|v\|_{K} + h_{K} \|\nabla v\|_{K})$

hold for all $v \in H^1(K)$, where $C_{tr} > 0$ is a constant independent of K.

Approximation error estimates

Let $\ell, s \in \mathbb{N}$ be $0 \leq \ell \leq s \leq p+1$, $u \in H^s_{0,\underline{0}}(Q)$, and K and \underline{K} are element and its extension, resp. Then, $\exists \Pi_h : H^s_{0,0}(Q) \to V_{0h}$ such that

$$|v - \Pi_h v|^2_{H^\ell(K)} \leq C^2_{\ell,s} h_K^{2(s-\ell)} \sum_{i=0}^s c_K^{2(i-\ell)} |v|^2_{H^i(\underline{K})}, \quad \forall v \in L^2(Q) \cap H^\ell(\underline{K}).$$

where $c_{\mathcal{K}} := \|\nabla_x \Phi\|_{L^{\infty}(\Phi^{-1}(\underline{\hat{K}}))}$, and $C_{\ell,s} > 0$ is a constant dependent on s, ℓ, p , and the shape regularity of \mathcal{K} , described by Φ and $\nabla_x \Phi$.

Stabilized variational identity for parabolic I-BVP

Testing the $-\Delta_{\times} u + \partial_t u = f$ ((d + 1)-dimetional elliptic problem with convection in (d + 1)th direction) by the upwind test function with $\lambda, \mu \ge 0$

$$\lambda w + \mu \partial_t w, \quad w \in H^{\nabla_x \partial_t, 1}_{0, \underline{0}}(Q) := \big\{ w \in H^{\Delta_x, 1}_{0, \underline{0}}(Q) : \nabla_x \partial_t w \in L^2(Q) \big\},$$

we obtain the variational identity

 $a(u, \lambda w + \mu \partial_t w) =: a_s(u, w) = \ell_s(w) := \ell(\lambda w + \mu \partial_t w)_Q, \quad \forall w \in H_{0,\underline{0}}^{\nabla_x \partial_t, 1}(Q)$

for the solution $u \in H^{\Delta_{\chi},1}_{0,\underline{0}}(Q)$.

For any $v \in H_{0,0}^{\Delta_x,1}$ approximating u, the error u - v is measured in terms of the norm

$$\| u - v \|_{s}^{2} := \lambda \left(\| \nabla_{x}(u - v) \|_{Q}^{2} + \| u - v \|_{\Sigma_{T}}^{2} \right) + \mu \left(\| \partial_{t}(u - v) \|_{Q}^{2} + \| \nabla_{x}(u - v) \|_{\Sigma_{T}}^{2} \right).$$

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 www.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

Stabilized variational identity for parabolic I-BVP

Testing the $-\Delta_x u + \partial_t u = f$ ((d + 1)-dimetional elliptic problem with convection in (d + 1)th direction) by the upwind test function with $\lambda, \mu \ge 0$

$$\lambda w + \mu \partial_t w, \quad w \in H^{\nabla_x \partial_t, 1}_{0, \underline{0}}(Q) := \big\{ w \in H^{\Delta_x, 1}_{0, \underline{0}}(Q) : \nabla_x \partial_t w \in L^2(Q) \big\},$$

we obtain the variational identity

$$\mathsf{a}(u, \lambda w + \mu \partial_t w) =: \mathsf{a}_{\mathsf{s}}(u, w) = \ell_{\mathsf{s}}(w) := \ell(\lambda w + \mu \partial_t w)_Q, \quad \forall w \in H_{0,\underline{0}}^{\nabla_{\mathsf{x}} \partial_t, 1}(Q)$$

for the solution $u \in H^{\Delta_{\chi},1}_{0,\underline{0}}(Q)$.

For any $v \in H^{\Delta_{\mathrm{X}},1}_{0,0}$ approximating u, the error u-v is measured in terms of the norm

$$\| u - v \|_{s}^{2} := \lambda \left(\| \nabla_{x}(u - v) \|_{Q}^{2} + \| u - v \|_{\Sigma_{T}}^{2} \right) + \mu \left(\| \partial_{t}(u - v) \|_{Q}^{2} + \| \nabla_{x}(u - v) \|_{\Sigma_{T}}^{2} \right).$$

Stabilized variational identity for parabolic I-BVP

Testing the $-\Delta_{\times} u + \partial_t u = f$ ((d+1)-dimetional elliptic problem with convection in (d+1)th direction) by the upwind test function with $\lambda = 1$ and $\mu = \delta_h = \theta h$, $\theta > 0$, $h := \max_{K \in \mathcal{K}_h} \{h_K\}$

$$w + \delta_h \partial_t w, \quad w \in H^{\nabla_x \partial_t, 1}_{0, \underline{0}}(Q) := \big\{ w \in H^{\Delta_x, 1}_{0, \underline{0}}(Q) : \nabla_x \partial_t w \in L^2(Q) \big\},$$

we obtain the variational identity

$$\mathsf{a}(u, \mathbf{w} + \delta_h \, \partial_t \mathbf{w}) =: \mathsf{a}_{s,h}(u, \mathbf{w}) = \ell_{s,h}(\mathbf{w}) := \ell(\mathbf{w} + \delta_h \, \partial_t \mathbf{w})_Q, \quad \forall w \in H_{0,\underline{0}}^{\nabla_x \partial_t, 1}(Q)$$

for the solution $u \in H_{0,0}^{\Delta_{\chi},1}(Q)$.

For any $v \in H^{\Delta_x,1}_{0,\underline{0}}$ approximating u, the error u-v is measured in terms of the norm

$$\| u - v \|_{s,h}^{2} := \| \nabla_{x}(u - v) \|_{Q}^{2} + \| u - v \|_{\Sigma_{T}}^{2} + \delta_{h} \left(\| \partial_{t}(u - v) \|_{Q}^{2} + \| \nabla_{x}(u - v) \|_{\Sigma_{T}}^{2} \right).$$

Stabilized space-time IgA scheme

IgA scheme [Langer, Moore, and Neumüller, 2016]

Find $u_h \in V_{0h} := \operatorname{span} \left\{ \phi_{h,i} := \widehat{B}_{i,p} \circ \Phi^{-1} \right\}_{i \in \mathcal{I}} \cap H_0^1(Q) \subset H_{0,\underline{0}}^{\Delta_{\times},1}(Q)$, i.e. $p \ge 2$, satisfying

$$\mathsf{a}_{s,h}(u_h,v_h) = \ell_{s,h}(v_h), \quad \forall v_h \in V_{0h},$$

where

$$\begin{aligned} \mathsf{a}_{s,h}(u_h,\mathsf{v}_h) &:= \left(\partial_t u_h, \mathsf{v}_h + \delta_h \,\partial_t \mathsf{v}_h\right)_Q + \left(\nabla_x u_h, \nabla_x (\mathsf{v}_h + \delta_h \,\partial_t \mathsf{v}_h)\right)_Q, \\ \ell_{s,h}(\mathsf{v}_h) &:= (f, \mathsf{v}_h + \delta_h \,\mathsf{v}_h)_Q, \end{aligned}$$

Remark: For $u \in V_0^s$, $s \ge 2$ and $u_h \in V_{0h}$, there exists a priori error estimates of the form

$$\|u - u_h\|_{s,h} \le C h^{r-1} \|u\|_{H^r(Q)}, \quad C > 0 \quad \text{and} \quad r = \min\{s, p+1\}.$$

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 www.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

Majorant of the error norm $||| \cdot ||_s$

Theorem 1 [Langer, Matculevich, and Repin, 2016]

For any approximation $v \in H_0^{\Delta_x,1}(Q)$ to $u \in H_0^{\Delta_x,1}(Q)$ and for any $y \in H^{\operatorname{div}_x,0}(Q)$, the error e = u - v can be estimated as follows:

 $\lambda \left(\|\nabla_{\mathbf{x}} \mathbf{e}\|_{Q}^{2} + \|\mathbf{e}\|_{\Sigma_{T}}^{2} \right) + \mu \left(\|\partial_{t} \mathbf{e}\|_{Q}^{2} + \|\nabla_{\mathbf{x}} \mathbf{e}\|_{\Sigma_{T}}^{2} \right) =: \|\|\mathbf{e}\|_{s}^{2}$

$$\leq \overline{\mathrm{M}}_{s}^{\mathrm{I},2}(\mathbf{v},\mathbf{y};\boldsymbol{\beta},\alpha) := \lambda \,\overline{\mathrm{M}}^{\mathrm{I},2}(\mathbf{v},\mathbf{y};\boldsymbol{\beta}) + \mu \Big((1+\alpha) \, \|\mathrm{div}_{\mathbf{x}}\mathbf{r}_{\mathrm{d}}\|_{Q}^{2} + (1+\frac{1}{\alpha}) \, \|\mathbf{r}_{\mathrm{eq}}\|_{Q}^{2} \Big)$$

where

$$\begin{split} \mathbf{r}_{eq}(\mathbf{v}, \mathbf{y}) &= f + \operatorname{div}_{\mathbf{x}} \mathbf{y} - \partial_t \mathbf{v} & \Leftarrow & \partial_t u - \operatorname{div}_{\mathbf{x}} \mathbf{p} = f, \\ \mathbf{r}_{d}(\mathbf{v}, \mathbf{y}) &= \mathbf{y} - \nabla_{\mathbf{x}} \mathbf{v} & \Leftarrow & \mathbf{p} = \nabla_{\mathbf{x}} u, \\ \operatorname{div}_{\mathbf{x}} \mathbf{r}_{d}(\mathbf{v}, \mathbf{y}) &= \operatorname{div}_{\mathbf{x}} \mathbf{y} - \Delta_{\mathbf{x}} \mathbf{v}. \end{split}$$

 λ , $\mu > 0$, and β , $\alpha > 0$ are auxiliary parameters.

	Space-time IgA ○○○○○●				
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	e Space-Time IgA	of Parabolic Evolution Pro	blems

Majorant of the error norm $||| \cdot ||_s$

Theorem 1 [Langer, Matculevich, and Repin, 2016]

For any approximation $v \in H_0^{\Delta_x,1}(Q)$ to $u \in H_0^{\Delta_x,1}(Q)$ and for any $y \in H^{\operatorname{div}_x,0}(Q)$, the error e = u - v can be estimated as follows:

 $\lambda \left(\left\| \nabla_{\mathbf{x}} \boldsymbol{e} \right\|_{Q}^{2} + \left\| \boldsymbol{e} \right\|_{\Sigma_{T}}^{2} \right) + \mu \left(\left\| \partial_{t} \boldsymbol{e} \right\|_{Q}^{2} + \left\| \nabla_{\mathbf{x}} \boldsymbol{e} \right\|_{\Sigma_{T}}^{2} \right) =: \left\| \boldsymbol{e} \right\|_{s}^{2}$

$$\leq \overline{\mathrm{M}}_{s}^{\mathrm{I},2}(\boldsymbol{v},\boldsymbol{y};\boldsymbol{\beta},\alpha) := \boldsymbol{\lambda} \,\overline{\mathrm{M}}^{\mathrm{I},2}(\boldsymbol{v},\boldsymbol{y};\boldsymbol{\beta}) + \mu \Big((1+\alpha) \, \|\mathrm{div}_{\mathrm{x}}\mathbf{r}_{\mathrm{d}}\|_{Q}^{2} + (1+\frac{1}{\alpha}) \, \|\mathbf{r}_{\mathrm{eq}}\|_{Q}^{2} \Big)$$

where

$$\begin{split} \mathbf{r}_{\rm eq}(\mathbf{v},\mathbf{y}) &= f + {\rm div}_{\mathsf{x}}\mathbf{y} - \partial_t \mathbf{v} & \Leftarrow \quad \partial_t u - {\rm div}_{\mathsf{x}}\mathbf{p} = f, \\ \mathbf{r}_{\rm d}(\mathbf{v},\mathbf{y}) &= \mathbf{y} - \nabla_{\mathsf{x}}\mathbf{v} & \Leftarrow \quad \mathbf{p} = \nabla_{\mathsf{x}}u, \\ {\rm div}_{\mathsf{x}}\mathbf{r}_{\rm d}(\mathbf{v},\mathbf{y}) &= {\rm div}_{\mathsf{x}}\mathbf{y} - \Delta_{\mathsf{x}}\mathbf{v}. \end{split}$$

 λ , $\mu > 0$, and β , $\alpha > 0$ are auxiliary parameters.

	Space-time IgA ○○○○○●				
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	e Space-Time IgA	of Parabolic Evolution Pro	blems

Majorant of the error norm $||| \cdot ||_s$

Theorem 1 [Langer, Matculevich, and Repin, 2016]

For any approximation $v \in H_0^{\Delta_x,1}(Q)$ to $u \in H_0^{\Delta_x,1}(Q)$ and for any $y \in H^{\operatorname{div}_x,0}(Q)$, the error e = u - v can be estimated as follows:

 $\lambda \left(\|\nabla_{\mathbf{x}} \mathbf{e}\|_{Q}^{2} + \|\mathbf{e}\|_{\Sigma_{T}}^{2} \right) + \mu \left(\|\partial_{t} \mathbf{e}\|_{Q}^{2} + \|\nabla_{\mathbf{x}} \mathbf{e}\|_{\Sigma_{T}}^{2} \right) =: \|\|\mathbf{e}\|_{s}^{2}$

 $\leq \overline{\mathrm{M}}_{s}^{\mathrm{I},2}(\boldsymbol{v},\boldsymbol{y};\boldsymbol{\beta},\alpha) := \lambda \,\overline{\mathrm{M}}^{\mathrm{I},2}(\boldsymbol{v},\boldsymbol{y};\boldsymbol{\beta}) + \mu \Big((1+\alpha) \, \|\mathrm{div}_{x}\mathbf{r}_{\mathrm{d}}\|_{Q}^{2} + (1+\frac{1}{\alpha}) \, \|\mathbf{r}_{\mathrm{eq}}\|_{Q}^{2} \Big)$

where

$$\begin{split} \mathbf{r}_{\rm eq}(\mathbf{v},\mathbf{y}) &= f + {\rm div}_{\mathsf{x}}\mathbf{y} - \partial_t \mathbf{v} & \Leftarrow & \partial_t u - {\rm div}_{\mathsf{x}}\mathbf{p} = f, \\ \mathbf{r}_{\rm d}(\mathbf{v},\mathbf{y}) &= \mathbf{y} - \nabla_{\mathsf{x}}\mathbf{v} & \Leftarrow & \mathbf{p} = \nabla_{\mathsf{x}}u, \\ {\rm div}_{\mathsf{x}}\mathbf{r}_{\rm d}(\mathbf{v},\mathbf{y}) &= {\rm div}_{\mathsf{x}}\mathbf{y} - \Delta_{\mathsf{x}}\mathbf{v}. \end{split}$$

 λ , $\mu > 0$, and β , $\alpha > 0$ are auxiliary parameters.

	Space-time IgA ○○○○○●				
www.ricam.oe	eaw.ac.at	Svetlana Matculevich, Adaptive	e Space-Time IgA	of Parabolic Evolution Pro	blems

Majorant of the error norm $||| \cdot ||_{s,h}$

Theorem 1 [Langer, Matculevich, and Repin, 2016]

For any approximation $v \in H_0^{\Delta_x,1}(Q)$ to $u \in H_0^{\Delta_x,1}(Q)$ and for any $y \in H^{\operatorname{div}_x,0}(Q)$, the error e = u - v can be estimated as follows:

$$\begin{aligned} & \left\| \nabla_{\mathsf{x}} \mathbf{e} \right\|_{Q}^{2} + \|\mathbf{e}\|_{\Sigma_{T}}^{2} \right) + \boldsymbol{\delta}_{\boldsymbol{h}} \left(\|\partial_{t} \mathbf{e}\|_{Q}^{2} + \|\nabla_{\mathsf{x}} \mathbf{e}\|_{\Sigma_{T}}^{2} \right) =: \|\|\mathbf{e}\|_{s,h}^{2} \\ & \leq \overline{\mathrm{M}}_{s}^{\mathrm{I},2}(\mathbf{v},\mathbf{y};\beta,\alpha) := \overline{\mathrm{M}}^{\mathrm{I},2}(\mathbf{v},\mathbf{y};\beta) + \boldsymbol{\delta}_{\boldsymbol{h}} \left((1+\alpha) \|\mathrm{div}_{\mathsf{x}} \mathbf{r}_{\mathrm{d}}\|_{Q}^{2} + (1+\frac{1}{\alpha}) \|\mathbf{r}_{\mathrm{eq}}\|_{Q}^{2} \right) \end{aligned}$$

where

$$\begin{split} \mathbf{r}_{eq}(\mathbf{v},\mathbf{y}) &= f + \operatorname{div}_{\mathbf{x}}\mathbf{y} - \partial_{t}\mathbf{v} & \Leftarrow \quad \partial_{t}u - \operatorname{div}_{\mathbf{x}}\mathbf{p} = f, \\ \mathbf{r}_{d}(\mathbf{v},\mathbf{y}) &= \mathbf{y} - \nabla_{\mathbf{x}}\mathbf{v} & \Leftarrow \quad \mathbf{p} = \nabla_{\mathbf{x}}u, \\ \operatorname{div}_{\mathbf{x}}\mathbf{r}_{d}(\mathbf{v},\mathbf{y}) &= \operatorname{div}_{\mathbf{x}}\mathbf{y} - \Delta_{\mathbf{x}}\mathbf{v}. \end{split}$$

 $\lambda,\,\mu>$ 0, and $\beta,\alpha>$ 0 are auxiliary parameters.

	Space-time IgA ○○○○○●				
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Locally stabilized space-time IgA schemes

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 www.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

Locally stabilized schemes

On each $K \in \mathcal{K}_h$, we test the PDE $\partial_t u - \Delta_x u = f$ with

 $v_h + \delta_K \partial_t v_h$, $\delta_K = \theta_K h_K$, where $\theta_K > 0$ and $h_K := \operatorname{diam}(K)$,

yielding

$$\left(\partial_t u - \Delta_x u, v_h + \delta_K \, \partial_t v_h\right)_K = (f, v_h + \delta_K \, \partial_t v_h)_K, \quad \forall u \in H_0^{\Delta_x, 1}(Q), \quad \forall v_h \in V_{0h}.$$

Summing up $K \in \mathcal{K}_h$, we obtain

$$\begin{aligned} (\partial_t u - \Delta_x u, v_h)_Q + \sum_{K \in \mathcal{K}_h} \delta_K \left(\partial_t u - \Delta_x u, \partial_t v_h \right)_K &=: a_{loc}(u, v_h) \\ &= \ell_{loc}(v_h) := (f, v_h)_Q + \sum_{K \in \mathcal{K}_h} \delta_K (f, \partial_t v_h)_K. \end{aligned}$$

Intro Space-time IgA Locally stabilized space-time IgA Adaptive IgA Numerical results Conclusions

Locally stabilized schemes

On each $K \in \mathcal{K}_h$, we test the PDE $\partial_t u - \Delta_x u = f$ with

 $v_h + \delta_K \partial_t v_h$, $\delta_K = \theta_K h_K$, where $\theta_K > 0$ and $h_K := \operatorname{diam}(K)$,

yielding

$$\left(\partial_t u - \Delta_x u, v_h + \delta_K \,\partial_t v_h\right)_K = (f, v_h + \delta_K \,\partial_t v_h)_K, \quad \forall u \in H_0^{\Delta_x, 1}(Q), \quad \forall v_h \in V_{0h}.$$

Summing up $K \in \mathcal{K}_h$, we obtain

$$\begin{aligned} (\partial_t u - \Delta_x u, v_h)_Q + \sum_{K \in \mathcal{K}_h} \delta_K \left(\partial_t u - \Delta_x u, \partial_t v_h \right)_K &=: a_{loc}(u, v_h) \\ &= \ell_{loc}(v_h) := (f, v_h)_Q + \sum_{K \in \mathcal{K}_h} \delta_K (f, \partial_t v_h)_K. \end{aligned}$$

Intro Space-time IgA Locally stabilized space-time IgA Adaptive IgA Numerical results Conclusions

Locally stabilized schemes

On each $K \in \mathcal{K}_h$, we test the PDE $\partial_t u - \Delta_x u = f$ with

 $v_h + \delta_K \partial_t v_h$, $\delta_K = \theta_K h_K$, where $\theta_K > 0$ and $h_K := \operatorname{diam}(K)$,

yielding

$$\left(\partial_t u - \Delta_x u, v_h + \delta_K \,\partial_t v_h\right)_K = (f, v_h + \delta_K \,\partial_t v_h)_K, \quad \forall u \in H_0^{\Delta_x, 1}(Q), \quad \forall v_h \in V_{0h}.$$

Summing up $K \in \mathcal{K}_h$, we obtain

$$\begin{aligned} (\partial_t u - \Delta_x u, v_h)_Q + \sum_{K \in \mathcal{K}_h} \delta_K \left(\partial_t u - \Delta_x u, \partial_t v_h \right)_K &=: a_{loc}(u, v_h) \\ &= \ell_{loc}(v_h) := (f, v_h)_Q + \sum_{K \in \mathcal{K}_h} \delta_K (f, \partial_t v_h)_K. \end{aligned}$$

Intro Space-time IgA Locally stabilized space-time IgA Adaptive IgA Numerical results Conclusions

Locally Stabilized IgA counterpart

Find $u_h \in V_{0h}$ satisfying the variational IgA scheme

$$a_{loc,h}(u_h, v_h) = \ell_{loc,h}(v_h), \quad \forall u_h, v_h \in V_{0h},$$

where

$$\begin{aligned} a_{loc,h}(u_h,v_h) &:= (\partial_t u_h,v_h)_Q + (\nabla_x u_h,\nabla_x v_h)_Q \\ &+ \sum_{K \in \mathcal{K}_h} \delta_K \left((\partial_t u_h,\partial_t v_h)_K + (\nabla_x u_h,\nabla_x \partial_t v_h)_K \right) \\ &- \sum_{K \in \mathcal{K}_h} \delta_K \sum_{E \in \mathcal{E}_h^K \cap \mathcal{E}_h^I} \left(\mathbf{n}_x^E \cdot \nabla_x u_h,\partial_t v_h \right)_E. \end{aligned}$$

and

$$\ell_{\mathit{loc},h}(\mathsf{v}_h) := (f,\mathsf{v}_h)_Q + \sum_{K \in \mathcal{K}_h} \delta_K (f, \partial_t \mathsf{v}_h)_K.$$

		Locally stabilized space-time IgA			
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

V_{0h} -coercivity of $a_{loc,h}(\cdot, \cdot)$

Lemma (coercivity)

Let

$$heta_{K} \in \left(0, rac{h_{K}}{d \ C_{int,1}^{2}}\right], \quad K \in \mathcal{K}_{h},$$

where $C_{int,1}$ is the constant in the 2nd inverse inequality. Then, $a_{loc,h}(u_h, v_h) : V_{0h} \times V_{0h} \to \mathbb{R}$ is V_{0h} -coercive w.r.t. to the norm

$$|||v_h||_{loc,h}^2 := ||\nabla_x v_h||_Q^2 + \frac{1}{2} ||v_h||_{\Sigma_T}^2 + \sum_{K \in \mathcal{K}_h} \delta_K ||\partial_t v_h||_K^2,$$

i.e., there exists a constant $\mu_{c, loc} > 0$ independent on K such that

 $a_{loc,h}(u_h,v_h) \geq \mu_{c,loc} ||\!| v_h |\!|\!|_{loc,h}^2.$

		Locally stabilized space-time IgA				
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems				

V_{0h} -coercivity of $a_{loc,h}(\cdot, \cdot)$

Lemma (coercivity)

Let

$$heta_{K} \in \left(0, rac{h_{K}}{d \ C_{int,1}^{2}}\right], \quad K \in \mathcal{K}_{h},$$

where $C_{int,1}$ is the constant in the 2nd inverse inequality. Then, $a_{loc,h}(u_h, v_h) : V_{0h} \times V_{0h} \to \mathbb{R}$ is V_{0h} -coercive w.r.t. to the norm

$$|||v_h||_{loc,h}^2 := ||\nabla_x v_h||_Q^2 + \frac{1}{2} ||v_h||_{\Sigma_T}^2 + \sum_{K \in \mathcal{K}_h} \delta_K ||\partial_t v_h||_K^2,$$

i.e., there exists a constant $\mu_{c, loc} > 0$ independent on K such that

 $a_{loc,h}(u_h,v_h) \geq \mu_{c,loc} ||\!| v_h |\!|\!|_{loc,h}^2.$

		Locally stabilized space-time IgA				
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems				

Uniform boundedness of $a_{loc,h}(\cdot, \cdot)$ on $V_{0h,*} \times V_{0h}$

Let $V_{0h,*} = H_0^{\Delta_{\times},1}(Q) + V_{0h}$ equipped with the norm

$$||v||_{loc,h,*}^{2} := |||v||_{loc,h}^{2} + \sum_{K \in \mathcal{K}_{h}} \left(\delta_{K}^{-1} ||v||_{K}^{2} + \delta_{K} ||\Delta_{x}v||_{K}^{2} \right)$$

Lemma (boundedness)

Let $\theta_K \in \left(0, \frac{h_K}{d C_{int,1}^2}\right]$, $K \in \mathcal{K}_h$. Then, $a_{loc,h}(\cdot, \cdot)$ is uniformly bounded on $V_{0h,*} \times V_{0h}$, i.e., there exist a constant $\mu_{b,loc} > 0$ independent on h_K such that

$$|a_{loc,h}(v,v_h)| \leq \mu_{b,loc} \|v\|_{loc,h,*} \|v_h\|_{loc,h}, \quad \forall v \in V_{0h,*}, \quad \forall v_h \in V_{0h}.$$

www.ricam.oeaw.ac.at		aw.ac.at	Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems				
			Locally stabilized space-time IgA				

Approximation properties and consistency

Lemma (approximation error estimates)

Let $I, s \in \mathbb{N}$ be $1 \leq l \leq s \leq p+1$, and $u \in H^s_{0,\underline{0}}(Q)$. Then, $\exists \Pi_h : H^s_{0,\underline{0}}(Q) \to V_{0h}$ and $C_1, C_2 > 0$, such that a priori error estimates hold

$$\| u - \Pi_h u \|_{loc,h}^2 \leq C_1 \sum_{K \in \mathcal{K}_h} h_K^{2(s-1)} \sum_{i=0}^{s} c_K^{2i} |u|_{H^i(\underline{K})}^2,$$
$$\| u - \Pi_h u \|_{loc,h,*}^2 \leq C_2 \sum_{K \in \mathcal{K}_h} h_K^{2(s-1)} \sum_{i=0}^{s} c_K^{2i} |u|_{H^i(\underline{K})}^2.$$

where $K \in \mathcal{K}_h$ is the mesh element and \underline{K} is its support extension on the physical domain.

Lemma (consistency)

Let $p \ge 2$. If the solution $u \in H_0^{\Delta_X,1}(Q)$, then it satisfies the **consistency variational** identity

$$a_{loc,h}(u,v_h) = \ell_{loc,h}(v_h), \quad \forall v_h \in V_{0h}.$$

		Locally stabilized space-time IgA			
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Approximation properties and consistency

Lemma (approximation error estimates)

Let $I, s \in \mathbb{N}$ be $1 \leq l \leq s \leq p+1$, and $u \in H^s_{0,\underline{0}}(Q)$. Then, $\exists \Pi_h : H^s_{0,\underline{0}}(Q) \to V_{0h}$ and $C_1, C_2 > 0$, such that a priori error estimates hold

$$\| u - \Pi_h u \|_{loc,h}^2 \leq C_1 \sum_{K \in \mathcal{K}_h} h_K^{2(s-1)} \sum_{i=0}^{s} c_K^{2i} |u|_{H^i(\underline{K})}^2,$$
$$\| u - \Pi_h u \|_{loc,h,*}^2 \leq C_2 \sum_{K \in \mathcal{K}_h} h_K^{2(s-1)} \sum_{i=0}^{s} c_K^{2i} |u|_{H^i(\underline{K})}^2.$$

where $K \in \mathcal{K}_h$ is the mesh element and \underline{K} is its support extension on the physical domain.

Lemma (consistency)

Let $p \ge 2$. If the solution $u \in H_0^{\Delta_{\times},1}(Q)$, then it satisfies the consistency variational identity

$$a_{loc,h}(u,v_h) = \ell_{loc,h}(v_h), \quad \forall v_h \in V_{0h}.$$

		Locally stabilized space-time IgA	Adaptive IgA		
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

A priori error estimate

Theorem (a priori error estimates)

Let $p \geq 2$, $u \in H_0^{\Delta_x,1}(Q) \cap H_0^s$, $s \geq 2$, be the exact solution, and $u_h \in V_{0h}$ be a solution of discrete IgA scheme

$$a_{loc,h}(u_h,v_h) = \ell_{loc,h}(v_h), \quad \forall u_h, v_h \in V_{0h} \quad \text{with} \quad \theta_K \in \left(0, rac{h_K}{d C_{int,1}^2}\right], \quad K \in \mathcal{K}_h.$$

Then, the a priori error estimate

$$|||u - u_h|||_{loc,h}^2 \le C \sum_{K \in \mathcal{K}_h} h_K^{2(r-1)} \sum_{i=0}^{+} c_K^{2i} |u|_{H^i(\underline{K})}^2, \quad r = \min\{s, p+1\},$$

holds, where p denotes the polynomial degree of the THB-splines,

$$C = \left(1 + \frac{\mu_{loc,b}}{\mu_{loc,c}}\right) C_2$$
 is a constant independent of h_K ,
 $K \in \mathcal{K}_h$ and its support extension \underline{K} , and
 $\mu_{loc,b}$ and $\mu_{loc,c}$ are constant in boundedness and coercivity inequalities, respectively

www.ricam.or	any ac at	Svetlana Matculevich Adaptive	Space-Time IgA	of Parabolic Evolution Pro	hlems
		Locally stabilized space-time IgA			

Adaptive space-time IgA schemes

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 www.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

Majorants for the heat equation with Dirichlet BC

For given $f \in L^2(Q)$ and $u_0 \in H^1_0(\Omega)$, find $u \in H^{\Delta_x,1}_0(Q)$ $u_t - \Delta_x u = f$ in Q, $u = u_D$ on Σ , $u(0, x) = u_0$ on Σ_0 .

The error $e = u - v = u - u_h$ is tracked by the norms

$$\|\boldsymbol{e}\|_{loc,h}^{2} := \|\nabla_{\boldsymbol{x}}\boldsymbol{e}\|_{Q}^{2} + \frac{1}{2}\|\boldsymbol{e}\|_{\Sigma_{T}}^{2} + \sum_{K \in \mathcal{K}_{h}} \delta_{K} \|\partial_{t}\boldsymbol{e}\|_{K}^{2}, \quad \delta_{K} = \theta_{K}h_{K}, \quad \theta_{K} \in \left(0, \frac{h_{K}}{dC_{int,1}^{2}}\right).$$

For any $v \in H_0^{\Delta_X,1}(Q)$ and $y \in H(Q, \operatorname{div}_X)$, $w \in H_0^{\Delta_X,1}(Q)$, and $\beta, \alpha > 0$, we have a posteriori estimates

$$\|\|\boldsymbol{e}\|^{2} := \|\nabla_{\boldsymbol{x}}\boldsymbol{e}\|_{\boldsymbol{Q}}^{2} + \|\boldsymbol{e}\|_{\boldsymbol{\Sigma}_{T}}^{2} \leq \overline{\mathrm{M}}^{\mathrm{I},2}(\boldsymbol{v},\boldsymbol{y};\boldsymbol{\beta}) \quad (\overline{\mathrm{M}}^{\mathrm{II},2}(\boldsymbol{v},\boldsymbol{y},\boldsymbol{w};\boldsymbol{\beta}^{\mathrm{II}}))$$

and error identity

$$\|e\|_{\mathcal{L},Q}^2 := \|\Delta_{\mathsf{x}} e\|_Q^2 + \|\partial_t e\|_Q^2 + \|\nabla_{\mathsf{x}} e\|_{\Sigma_{\mathcal{T}}}^2 \equiv \operatorname{Id}^2(v).$$

			000000	000000	000000000000000000000000000000000000000	00000000000
www.ricam.oeaw.ac.at		aw.ac.at	Svetlana Matculevich, Adaptive	e Space-Time IgA	of Parabolic Evolution Pro	blems

Majorants for the heat equation with Dirichlet BC

For given $f \in L^2(Q)$ and $u_0 \in H^1_0(\Omega)$, find $u \in H^{\Delta_x,1}_0(Q)$ $u_t - \Delta_x u = f \text{ in } Q, \quad u = u_D \text{ on } \Sigma, \quad u(0,x) = u_0 \text{ on } \Sigma_0.$

The error $e = u - v = u - u_h$ is tracked by the norms

$$\|\|\boldsymbol{e}\|_{loc,h}^{2} := \|\nabla_{\boldsymbol{x}}\boldsymbol{e}\|_{Q}^{2} + \frac{1}{2}\|\boldsymbol{e}\|_{\Sigma_{T}}^{2} + \sum_{\boldsymbol{K}\in\mathcal{K}_{h}}\delta_{\boldsymbol{K}}\|\partial_{t}\boldsymbol{e}\|_{\boldsymbol{K}}^{2}, \quad \delta_{\boldsymbol{K}} = \theta_{\boldsymbol{K}}h_{\boldsymbol{K}}, \quad \theta_{\boldsymbol{K}}\in\left(0, \frac{h_{\boldsymbol{K}}}{dC_{int,1}^{2}}\right].$$

For any $v \in H_0^{\Delta_X,1}(Q)$ and $y \in H(Q, \operatorname{div}_X)$, $w \in H_0^{\Delta_X,1}(Q)$, and $\beta, \alpha > 0$, we have a posteriori estimates

 $\|\|\boldsymbol{e}\|^{2} := \|\nabla_{\boldsymbol{x}}\boldsymbol{e}\|_{\boldsymbol{Q}}^{2} + \|\boldsymbol{e}\|_{\boldsymbol{\Sigma}_{T}}^{2} \leq \overline{\mathrm{M}}^{\mathrm{I},2}(\boldsymbol{v},\boldsymbol{y};\boldsymbol{\beta}) \quad (\overline{\mathrm{M}}^{\mathrm{II},2}(\boldsymbol{v},\boldsymbol{y},\boldsymbol{w};\boldsymbol{\beta}^{\mathrm{II}}))$

and error identity

$$\|e\|_{\mathcal{L},Q}^2 := \|\Delta_{\mathsf{x}} e\|_Q^2 + \|\partial_t e\|_Q^2 + \|\nabla_{\mathsf{x}} e\|_{\Sigma_{\mathcal{T}}}^2 \equiv \operatorname{I\!d}^2(v).$$

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 www.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

Majorants for the heat equation with Dirichlet BC

For given $f \in L^2(Q)$ and $u_0 \in H^1_0(\Omega)$, find $u \in H^{\Delta_x,1}_0(Q)$ $u_t - \Delta_x u = f \text{ in } Q, \quad u = u_D \text{ on } \Sigma, \quad u(0,x) = u_0 \text{ on } \Sigma_0.$

The error $e = u - v = u - u_h$ is tracked by the norms

$$\|\|\boldsymbol{e}\|_{loc,h}^{2} := \|\nabla_{\boldsymbol{x}}\boldsymbol{e}\|_{Q}^{2} + \frac{1}{2}\|\boldsymbol{e}\|_{\Sigma_{T}}^{2} + \sum_{\boldsymbol{K}\in\mathcal{K}_{h}}\delta_{\boldsymbol{K}}\|\partial_{t}\boldsymbol{e}\|_{\boldsymbol{K}}^{2}, \quad \delta_{\boldsymbol{K}} = \theta_{\boldsymbol{K}}\boldsymbol{h}_{\boldsymbol{K}}, \quad \theta_{\boldsymbol{K}}\in\left(0,\frac{h_{\boldsymbol{K}}}{dC_{int,1}^{2}}\right].$$

For any $v \in H_0^{\Delta_x,1}(Q)$ and $y \in H(Q, \operatorname{div}_x)$, $w \in H_0^{\Delta_x,1}(Q)$, and $\beta, \alpha > 0$, we have a posteriori estimates

$$\|\boldsymbol{e}\|^{2} := \|\nabla_{\boldsymbol{x}}\boldsymbol{e}\|_{Q}^{2} + \|\boldsymbol{e}\|_{\Sigma_{T}}^{2} \leq \overline{\mathrm{M}}^{\mathrm{I},2}(\boldsymbol{v},\boldsymbol{y};\beta) \quad (\overline{\mathrm{M}}^{\mathrm{II},2}(\boldsymbol{v},\boldsymbol{y},\boldsymbol{w};\beta^{\mathrm{II}}))$$

and error identity

$$|||e|||_{\mathcal{L},Q}^2 := ||\Delta_x e||_Q^2 + ||\partial_t e||_Q^2 + ||\nabla_x e||_{\Sigma_T}^2 \equiv \operatorname{Id}^2(v).$$

			Adaptive IgA ○●○○○○○		
www.ricam.oeav	w.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Reconstruction of optimal $\overline{\mathrm{M}}^{\mathrm{I}}(\boldsymbol{v},\boldsymbol{y};\beta^{\mathrm{I}})$

 $\mathsf{Solving}\ \{ \textbf{\textit{y}}_{\min}, \beta^I_{\min} \} := \arg\inf_{\beta^I > 0} \inf_{\textbf{\textit{y}} \in \mathcal{H}(\mathcal{Q}, \operatorname{div}_{\star})} \overline{\mathrm{M}}^{I,2}(\textbf{\textit{v}}, \textbf{\textit{y}}; \beta^I) \text{, where}$

$$\overline{\mathbf{M}}^{\mathrm{I},2}(\mathbf{v},\mathbf{y};\beta^{\mathrm{I}}) := (1+\beta^{\mathrm{I}}) \underbrace{\|\mathbf{y} - \nabla_{\mathsf{x}}\mathbf{v}\|_{Q}^{2}}_{\overline{\mathbf{m}}_{\mathrm{d}}^{\mathrm{I},2}} + \left(1+\frac{1}{\beta^{\mathrm{I}}}\right) C_{\mathrm{F}\Omega}^{2} \underbrace{\|f + \operatorname{div}_{\mathsf{x}}\mathbf{y} - \partial_{t}\mathbf{v}\|_{Q}^{2}}_{\overline{\mathbf{m}}_{\mathrm{eq}}^{\mathrm{I},2}}$$

leads to

the auxiliary variation problem for the optimal \pmb{y}_{\min} , i.e.,

$$\frac{C_{\mathrm{F}\Omega}^2}{\beta_{\min}^{\mathrm{I}}} (\mathrm{div}_{\mathsf{x}} \mathbf{y_{\min}}, \mathrm{div}_{\mathsf{x}} \boldsymbol{\eta})_Q + (\mathbf{y_{\min}}, \boldsymbol{\eta})_Q = -\frac{C_{\mathrm{F}\Omega}^2}{\beta_{\min}^{\mathrm{I}}} (f - \partial_t \mathbf{v}, \mathrm{div}_{\mathsf{x}} \boldsymbol{\eta})_Q + (\nabla_{\mathsf{x}} \mathbf{v}, \boldsymbol{\eta})_Q,$$

with the optimal
$$\beta_{\min}^{\mathrm{I}} := rac{C_{\mathrm{F}\Omega} \, \overline{\mathrm{m}}_{\mathrm{eq}}^{\mathrm{I}}}{\overline{\mathrm{m}}_{\mathrm{d}}^{\mathrm{I}}}.$$

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 www.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

IgA spaces for u_h approximation

$$\begin{split} \widehat{V}_h &\equiv \widehat{S}_h^p := \operatorname{span} \left\{ \widehat{B}_{i,p} \right\}, \\ u_h &\in V_h \equiv S_h^p := \left\{ \widehat{V}_h \circ \Phi^{-1} \right\} \cap H^1_{u_D}(Q) := \operatorname{span} \left\{ \phi_{h,i} := \widehat{B}_{i,p} \circ \Phi^{-1} \right\}_{i \in \mathcal{I}} \cap H^1_{u_D}(Q). \end{split}$$

Generated approximation u_h is presented as

$$u_h(x) = \sum_{i \in \mathcal{I}} \underline{\mathrm{u}}_i \phi_{h,i}(x), \quad \underline{\mathrm{u}}_h := [\mathrm{u}_i]_{i \in \mathcal{I}} \in \mathbb{R}^{|\mathcal{I}|},$$

where $\underline{\mathbf{u}}_h$ is a vector of DOFs defined by a system

$$\begin{split} \mathbf{K}_{h} \underline{\mathbf{u}}_{h} &= \mathbf{f}_{h}, & : \mathbf{t}_{\mathrm{as}}(\boldsymbol{u}_{h}) + \mathbf{t}_{\mathrm{sol}}(\boldsymbol{u}_{h}) \\ \mathbf{K}_{h} &:= \left[\mathbf{a}_{s,h}(\phi_{h,i}, \phi_{h,j}) \right]_{i,j}^{\mathcal{I}}, \\ \mathbf{f}_{h} &:= \left[\ell_{s,h}(\phi_{h,i}) \right]_{i}^{\mathcal{I}}. \end{split}$$

			Adaptive IgA ○○○●○○○		
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	e Space-Time IgA	of Parabolic Evolution Pro	oblems

IgA spaces for u_h approximation

$$\begin{split} \widehat{V}_h &\equiv \widehat{S}_h^p := \operatorname{span} \{ \widehat{B}_{i,p} \}, \\ u_h &\in V_h \equiv S_h^p := \{ \widehat{V}_h \circ \Phi^{-1} \} \cap H^1_{u_D}(Q) := \operatorname{span} \{ \phi_{h,i} := \widehat{B}_{i,p} \circ \Phi^{-1} \}_{i \in \mathcal{I}} \cap H^1_{u_D}(Q). \end{split}$$

Generated approximation u_h is presented as

$$u_h(x) = \sum_{i \in \mathcal{I}} \underline{\mathrm{u}}_i \phi_{h,i}(x), \quad \underline{\mathrm{u}}_h := [\mathrm{u}_i]_{i \in \mathcal{I}} \in \mathbb{R}^{|\mathcal{I}|},$$

where \underline{u}_h is a vector of DOFs defined by a system

$$\begin{split} \mathbf{K}_{h} \underline{\mathbf{u}}_{h} &= \mathbf{f}_{h}, & : \mathbf{t}_{\mathrm{as}}(u_{h}) + \mathbf{t}_{\mathrm{sol}}(u_{h}) \\ \mathbf{K}_{h} &:= \left[a_{s,h}(\phi_{h,i}, \phi_{h,j}) \right]_{i,j}^{\mathcal{I}}, \\ \mathbf{f}_{h} &:= \left[\ell_{s,h}(\phi_{h,i}) \right]_{i}^{\mathcal{I}}. \end{split}$$

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 www.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

IgA spaces for the flux reconstruction y_h

$$\begin{split} \widehat{Y}_h &\equiv \oplus^{d+1} \widehat{S}_h^q, \\ \mathbf{y}_h &= \begin{bmatrix} y_h^{(1)} \\ \ddots \\ y_h^{(d+1)} \end{bmatrix} \in Y_h \equiv \oplus^{d+1} \mathcal{S}_h^q := \big\{ \widehat{Y}_h \circ \Phi^{-1} \big\} = \operatorname{span} \big\{ \psi_{h,i} := [\widehat{B}_{i,q}]^{d+1} \circ \Phi^{-1} \big\}_{i \in \mathcal{I}} \end{split}$$

Generated reconstruction of y_h is presented as

$$\mathbf{y}_h(\mathbf{x}) := \sum_{i \in \mathcal{I} \times (d+1)} \underline{\mathbf{y}}_{h,i} \, \psi_{h,i}(\mathbf{x}),$$

where $\underline{\mathbf{y}}_h := [\underline{\mathbf{y}}_{h,i}]_{i \in \mathcal{I} \times (d+1)} \in \mathbb{R}^{(d+1)|\mathcal{I}|}$ is a vector of DOFs of \mathbf{y}_h defined by a system

$$\left(C_{\mathrm{F}\Omega}^{2}\operatorname{Div}_{h}+\beta\operatorname{M}_{h}\right)\underline{\mathbf{y}}_{h}=-C_{\mathrm{F}\Omega}^{2}\operatorname{z}_{h}+\beta\operatorname{g}_{h},\qquad \qquad :t_{\mathrm{as}}(y_{h})+t_{\mathrm{sol}}(y_{h})$$

with

$$\begin{aligned} \text{Div}_{h} &:= \left[(\text{div}_{x} \psi_{i}, \text{div}_{x} \psi_{j}) \right]_{i,j=1}^{(d+1)|\mathcal{I}|}, \quad \mathbf{z}_{h} &:= \left[(f - \partial_{t} \mathbf{v}, \text{div}_{x} \psi_{j}) \right]_{j=1}^{(d+1)|\mathcal{I}|} \\ \text{M}_{h} &:= \left[(\psi_{i}, \psi_{j}) \right]_{i,j=1}^{(d+1)|\mathcal{I}|}, \qquad \mathbf{g}_{h} &:= \left[(\nabla_{x} \mathbf{v}, \psi_{j}) \right]_{j=1}^{(d+1)|\mathcal{I}|}. \end{aligned}$$

IgA spaces for the flux reconstruction y_h

$$\begin{split} \widehat{Y}_h &\equiv \oplus^{d+1} \widehat{\mathcal{S}}_h^q, \\ \mathbf{y}_h &= \begin{bmatrix} y_h^{(1)} \\ \ddots \\ y_h^{(d+1)} \end{bmatrix} \in Y_h \equiv \oplus^{d+1} \mathcal{S}_h^q := \{ \widehat{Y}_h \circ \Phi^{-1} \} = \operatorname{span} \{ \psi_{h,i} := [\widehat{B}_{i,q}]^{d+1} \circ \Phi^{-1} \}_{i \in \mathcal{I}} \end{split}$$

Generated reconstruction of y_h is presented as

$$\mathbf{y}_h(\mathbf{x}) := \sum_{i \in \mathcal{I} \times (d+1)} \underline{\mathbf{y}}_{h,i} \, \psi_{h,i}(\mathbf{x}),$$

where $\underline{\mathbf{y}}_h := [\underline{\mathbf{y}}_{h,i}]_{i \in \mathcal{I} \times (d+1)} \in \mathbb{R}^{(d+1)|\mathcal{I}|}$ is a vector of DOFs of \mathbf{y}_h defined by a system

$$\left(C_{\mathrm{F}\Omega}^{2}\operatorname{Div}_{h}+\beta\operatorname{M}_{h}\right)\underline{\mathbf{y}}_{h}=-C_{\mathrm{F}\Omega}^{2}\operatorname{z}_{h}+\beta\operatorname{g}_{h}, \qquad \qquad :t_{\mathrm{as}}(y_{h})+t_{\mathrm{sol}}(y_{h})$$

with

$$\begin{split} \text{Div}_{h} &:= \left[(\text{div}_{x} \psi_{i}, \text{div}_{x} \psi_{j}) \right]_{i,j=1}^{(d+1)|\mathcal{I}|}, \quad \mathbf{z}_{h} &:= \left[(f - \partial_{t} \mathbf{v}, \text{div}_{x} \psi_{j}) \right]_{j=1}^{(d+1)|\mathcal{I}|}, \\ \text{M}_{h} &:= \left[(\psi_{i}, \psi_{j}) \right]_{i,j=1}^{(d+1)|\mathcal{I}|}, \qquad \mathbf{g}_{h} &:= \left[(\nabla_{x} \mathbf{v}, \psi_{j}) \right]_{j=1}^{(d+1)|\mathcal{I}|}. \end{split}$$

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 0000000
 000000
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Conclusions

Single refinement step for u_h approximation

Input: \mathcal{K}_h {discretization of Q}, span { $\phi_{h,i}$ }, $i = 1, ..., |\mathcal{I}|$ { V_h -basis}

APPROXIMATE:

compute u_h : ASSEMBLE and SOLVE $K_h \underline{u}_h = f_h$ $:t_{as}(u_h) + t_{sol}(u_h)$

Evaluate $e = u - u_h$ in terms of ||e||, $||e||_{loc,h}$, and $||e||_{\mathcal{L}}$

ESTIMATE:

compute $\overline{\mathrm{M}}^{\mathrm{I}}(u_h, \mathbf{y}_h)$	$:t_{ m as}(oldsymbol{y}_h)+t_{ m sol}(oldsymbol{y}_h)$
compute $\overline{\mathrm{M}}^{\mathrm{II}}(u_h, \boldsymbol{y}_h, w_h)$	$t_{\mathrm{as}}(w_h) + t_{\mathrm{sol}}(w_h)$
compute $\mathbb{E}d(u_h)$	

MARK: Using marking $\mathbb{M}_{\text{BULK}}(\sigma)$, select elements K of mesh \mathcal{K}_h that must be refined

REFINE: Execute the refinement strategy $\mathcal{K}_{h_{ref}} = \mathcal{R}(\mathcal{K}_h)$

Output: $\mathcal{K}_{h_{ref}}$ {refined discretization of Q}

www.ricam.oeaw.	ac at	Svetlana Matculevich Adaptive	Space-Time IgA	of Parabolic Evolution Prol	olems
		Locally stabilized space-time IgA	Adaptive IgA ○○○○○●○		

We use the idea from [Kleiss, Tomar, 2015]:

000000000	000000	0000000 Svotlana Matculovich Adaptivo	0000000 Space Time IgA	occocococococococococococococococococo	00000000000000000000000000000000000000
			Adaptive IgA		

We use the idea from [Kleiss, Tomar, 2015]:

www.ricam.oeaw.ac.at	Devilia
Intro Space-time IgA Locally stabilized space-time IgA Adaptive IgA Numerical results	

We use the idea from [Kleiss, Tomar, 2015]:

	-	- 11	_	- h	

 $u_i \in V_i = S^p$

 u_h is approx. on \mathcal{K}_h

00000000	000000	Svetlana Matculevich Adaptive	Space Time IgA	of Parabolic Evolution Pro	00000000000000000000000000000000000000
			Adaptive IgA		

We use the idea from [Kleiss, Tomar, 2015]:

u _h	\in	$V_h \equiv S_h^H$	ס ו

 u_h is approx. on \mathcal{K}_h

			Adaptive IgA ○○○○○●		
www.ricam.oe	eaw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Numerical results

Example 1

Given data of 1d+t dimensional problem:

$$\Omega = (0, 1), T = 1$$

$$u = \sin(k_1 \pi x) \sin(k_2 \pi t)$$

$$f = \sin(k_1 \pi x) (k_2 \pi \cos(k_2 \pi t) + k_1^2 \pi^2 \sin(k_2 \pi t))$$

$$u_D = 0$$

Discretization:

$$u_h \in S_h^2$$
 and $u_h \in S_h^3$
Example 1-1: $k_1 = k_2 = 1$:
Example 1-2: $k_1 = 3, k_2 = 6$:

				Numerical results	
www.ricam.or	Paw ac at	Svetlana Matculevich Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 1-1. Adaptive refinement for $u_h \in S_h^2$ and $u_h \in S_h^3$

# ref.	e _Q	$\mathit{I}_{\rm eff}(\overline{\mathrm{M}}^{\mathrm{I}})$	$I_{\rm eff}(\overline{\rm M}^{\rm I\!I})$	∭e∭ _{loc,h}	e _∠	$I_{ m eff}({ m I\!\!E}{ m d})$	e.o.c. (∭e∭ _{loc,h})	e.o.c. (∭ <i>e</i> ∭∠)
(a) <i>u_h (</i>	$\in S_h^2$, $y_h \in \oplus^2$	S_{7h}^4 , and w_h	$\in S^4_{7h}$					
2 4 8	2.9034e-03 3.3878e-04 9.2649e-06	1.94 3.14 5.78	1.17 1.33 3.23	3.0649e-03 3.5057e-04 9.2835e-06	2.9197e-01 9.3154e-02 1.7351e-02	1.00 1.00 1.00	2.38 1.96 3.79	1.40 1.07 1.79
(b) <i>u_h</i>	$\in S_h^3$, $y_h \in \oplus^2$	S_{5h}^6 , and w_h	$\in S^6_{5h}$					
2 4 8	4.9924e-03 1.3562e-04 3.5507e-07	1.31 1.64 3.44	1.04 1.30 1.24	5.0700e-03 1.3591e-04 3.5535e-07	1.1918e-01 8.9725e-03 1.6376e-04	1.00 1.00 1.00	5.08 3.56 3.11	4.18 2.89 2.13

Efficiency of $\overline{\mathrm{M}}^{\mathrm{I}}$, $\overline{\mathrm{M}}^{\mathrm{II}}$, and $\mathbb{I}d$ for $\sigma = 0.4$ ($N_{\mathrm{ref},0} = 3$).

	Examp	le 1-1	Ada	ptive ref	inement f	for $u_h \in S$	S_h^2 and u_h	$r\in S_h^{3}$		
		d.o.f.			$t_{\rm as}$			$t_{ m sol}$		$\frac{t_{\mathrm{appr.}}}{t_{\mathrm{er.est.}}}$
# ref.	u _h	y _h	w _h	u _h	Уh	w _h	u _h	Уh	w _h	
(a) <i>u</i>	$h \in S_h^2$, y	$h \in \oplus^2 S$	5 _{7<i>h</i>} , and	$w_h \in S^4_{7h}$						
6 7 8	12935 34037 61258	288 288 288	144 144 144	1.55e+01 4.90e+01 9.37e+01	3.97e-01 3.98e-01 3.80e-01	3.83e-01 3.73e-01 3.62e-01	2.17e+00 9.58e+00 2.42e+01	2.30e-03 3.36e-03 2.10e-03	1.37e-03 1.42e-03 1.83e-03	44.25 145.95 308.55
				$t_{\rm as}(u_h)$ 258.63	$t_{as}(y_h)$: 1.05	$t_{as}(w_h)$ 1.00	$t_{sol}(u_h)$: 13252.51	$t_{sol}(y_h)$: 1.15	$t_{sol}(w_h)$ 1.00	
(b) <i>u</i>	$h \in S_h^3$, y	$h \in \oplus^2 S$	5 _{5<i>h</i>} , and	$w_h \in S_{5h}^5$						
6 7 8	13742 35091 78561	338 644 744	169 322 372	1.62e+01 5.36e+01 1.91e+02	7.03e-01 5.65e+00 5.61e+00	7.03e-01 5.52e+00 5.03e+00	2.11e+00 1.10e+01 2.40e+01	2.53e-03 9.31e-03 2.51e-02	1.43e-03 5.29e-03 7.56e-03	25.95 11.41 38.15
				t _{as} (u _h) 37.97	$t_{as}(\boldsymbol{y}_h)$: 1.11	$t_{as}(w_h)$ 1.00	t _{sol} (u _h) : 3168.34	$t_{sol}(\boldsymbol{y}_h)$: 3.31	$t_{sol}(w_h)$ 1.00	

Assembling and solving time spent for the systems defining d.o.f. of u_h , y_h , and w_h .

				Numerical results	
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 1-1. Comparison of meshes for $\mathbb{M}_{\mathrm{BULK}}(0.4)$

			Adaptive IgA 0000000	Numerical results	
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	e Space-Time IgA	of Parabolic Evolution Pro	blems

Example 1-1. Comparison of meshes for $M_{\rm BULK}(0.4)$

	0000000		00000000000
		Numerical results	

Example 1-1. Comparison of meshes for $\mathbb{M}_{\mathrm{BULK}}(0.4)$

Example 1-1. Comparison of meshes for $\overline{\mathbb{M}_{\mathrm{BULK}}(0.4)}$

www.ricam.oe	aw ac at	Svetlana Matculevich Adaptive	Space-Time IgA	of Parabolic Evolution Prol	hlems
				Numerical results	

Example 1-1. Comparison of meshes for $M_{\rm BULK}(0.4)$

			Adaptive IgA	Numerical results	
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

ref. 6

Johann Radon Institute for Computational and Applied Mathematics

Example 1-1. Comparison of meshes for $\mathbb{M}_{\mathrm{BULK}}(0.4)$

ref. based on true error $||u - u_h||_{loc,h,K}^2$ ref. based on true error $||u - u_h||_K^2$ ref. based on indicator $||y_h - \nabla_x u_h||_K^2$ indicator $||y_h - \nabla_x u_h||_K^2$

ref. 6

Intro 00000000	Space-time IgA 000000	Locally stabilized space-time IgA	Adaptive IgA 0000000	Numerical results	Conclusions
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

ref. 6

Example 1-1. Error order of convergence

The e.o.c. for $k_1 = k_2 = 1$.

		0000000			
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptiv	e Space-Time IgA	of Parabolic Evolution Pro	oblems

Example 1-2. Adaptive refinement, $u_h \in S_h^2$, $y_h \in \oplus^2 S_{5h}^7$, and $w_h \in S_{5h}^7$

# ref.	∥e∥ _Q	$I_{\rm eff}(\overline{\rm M}^{\rm I})$	$I_{\rm eff}(\overline{\mathrm{M}}^{\mathrm{I\!I}})$	∭e∭ _{loc,h}	∥ e ∥ _L	$I_{\rm eff}({\rm I\!\!E}{\rm d})$	e.o.c. (∭e∭ _{loc,h})	e.o.c. (∭e∭∠)
(a) \mathbb{M}_{B}	_{ULK} (0.4)							
2 3 8	5.7161e-01 1.3927e-01 1.2298e-03	2.11 5.77 1.44	1.38 2.20 1.16	5.7163e-01 1.3928e-01 1.2298e-03	6.2371e+01 3.1026e+01 2.6917e+00	1.00 1.00 1.00	2.99 2.30 5.60	1.19 1.14 2.30
(b) \mathbb{M}_{B}	(b) M _{BULK} (0.6)							
2 3 8	5.7161e-01 1.7942e-01 2.7492e-03	2.11 4.69 1.44	1.38 1.96 1.15	5.7163e-01 1.7945e-01 2.7492e-03	6.2371e+01 3.2971e+01 4.0721e+00	1.00 1.00 1.00	2.99 2.18 4.75	1.19 1.20 1.91

Efficiency of $\overline{\mathrm{M}}^{\mathrm{I}}$, $\overline{\mathrm{M}}^{\mathrm{II}}$, and $\operatorname{\mathbb{E}}d$ for $\mathbb{M}_{\mathrm{BULK}}(0.4)$ and $\mathbb{M}_{\mathrm{BULK}}(0.6)$ ($N_{\mathrm{ref},0} = 3$).

	Exam	ole 1-2	2. Ada	ptive refir	nement, <i>u</i>	$u_h\in S_h^2$, y	$\boldsymbol{y}_h \in \oplus^2 S$	$_{5h}^{7}$, and	$w_h \in S^7_{5h}$	
		d.o.f.			$t_{\rm as}$			$t_{ m sol}$	Į	$\frac{t_{\rm appr.}}{t_{\rm er.est.}}$
# ref.	u _h	y _h	Wh	u _h	Уh	wh	u _h	y _h	w _h	
(a) 1	M _{BULK} (().4)								
6 7 8	30101 86849 141987	450 1058 2850	225 529 1425	5.99e+01 3.57e+02 6.36e+02	2.29e+00 9.30e+00 6.50e+01	2.92e+00 9.41e+00 5.91e+01	3.57e+00 1.11e+01 2.56e+01	8.52e-03 5.19e-02 3.00e-01	4.33e-03 3.47e-02 1.29e-01	12.14 19.58 5.31
				t _{as} (u _h) 10.76	: $t_{as}(\boldsymbol{y}_h)$: 1.10	$\frac{t_{\rm as}(w_h)}{1.00}$	$t_{sol}(u_h)$: 198.84	$t_{sol}(y_h)$: 2.32	$t_{sol}(w_h)$ 1.00	
(b)	M _{BULK} (0).6)								
6 7 8	15436 35745 52453	450 1058 2498	225 529 1249	2.61e+01 8.99e+01 1.05e+02	2.36e+00 9.86e+00 8.03e+01	2.41e+00 1.01e+01 7.08e+01	1.77e+00 4.68e+00 7.38e+00	1.45e-02 7.06e-02 3.47e-01	3.12e-03 4.12e-02 1.66e-01	11.73 9.52 1.39
				tas(u _h) 1.49	$t_{as}(\mathbf{y}_h)$: 1.13	$\frac{t_{\rm as}(w_h)}{1.00}$	t _{sol} (u _h) : 44.46	$t_{sol}(\boldsymbol{y}_h)$: 2.09	$\frac{t_{\rm sol}(w_h)}{1.00}$	

Assembling and solving time spent for the systems defining d.o.f. of u_h , y_h , and w_h .

	Locally stabilized space-time IgA	Adaptive IgA 0000000	Numerical results	
www.ricam.oeaw.ac.at	Svetlana Matculevich, Adaptive	e Space-Time IgA	of Parabolic Evolution Pro	blems

 $u_h \in S_h^2$, $y_h \in \oplus^2 S_{5h}^7$, and $w_h \in S_{5h}^7$.

				Numerical results	
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	e Space-Time IgA	of Parabolic Evolution Pro	blems

$u_h \in S_h^2$, $y_h \in \oplus^2 S_{5h}^7$, and $w_h \in S_{5h}^7$.

				Numerical results	
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

$u_h \in S_h^2$, $y_h \in \oplus^2 S_{5h}^7$, and $w_h \in S_{5h}^7$.

				Numerical results	
www.ricam.oeaw	.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

$u_h \in S_h^2$, $y_h \in \oplus^2 S_{5h}^7$, and $w_h \in S_{5h}^7$.

				Numerical results	
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 1-2. Error order of convergence

The e.o.c. for $k_1 = 6$, $k_2 = 3$.

				Numerical results	
www.ricam.oea	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 2. Moving spatial domains

$$\begin{array}{l} Q := \{(x,t)\mathbb{R}^{d+1} : x \in \Omega(t), \ t \in (0,T)\}, \ \text{where} \\ \Omega(t) = \{x \in \mathbb{R}^d : a(t) < x < b(t)\}, \ t \in (0,T) \\ a(t) = 0.5 \ t \ (1-t), \\ b(t) = 1 - a(t), \ \text{and} \\ T = 1 \end{array}$$

$$u(x, t) = \sin(\pi x) \sin(\pi t),$$

$$f(x, t) = \pi \sin(\pi x) (\cos(\pi t) + \pi \sin(\pi t))$$

2d+t:

$$u(x, t) = \sin(\pi x) \sin(\pi y) \sin(\pi t),$$

$$f(x, t) = (\pi \sin(\pi x) \sin(\pi y)) (\cos(\pi t) + 2\pi \sin(\pi t))$$

			0000000			
www.ricam.oeaw.ac.at		aw ac at	Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems			

$\mathbb{M}_{\rm BULK}(0.4)$

$\mathbb{M}_{\rm BULK}(0.6)$

ref. 5: \mathcal{K}_h

ref. 5: \mathcal{K}_h

$$u_h \in S_h^2$$
, $\mathbf{y}_h \in \oplus^2 S_{4h}^4$, and $w_h \in S_{4h}^4$.

www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Prol	blems
				Numerical results	

$\mathbb{M}_{\mathrm{BULK}}(0.4)$

$\mathbb{M}_{\mathrm{BULK}}(0.6)$

ref. 6: \mathcal{K}_h

ref. 6: \mathcal{K}_h

$$u_h \in S_h^2$$
, $\boldsymbol{y}_h \in \oplus^2 S_{4h}^4$, and $w_h \in S_{4h}^4$.

$\mathbb{M}_{\mathrm{BULK}}(0.4)$

$\mathbb{M}_{\mathrm{BULK}}(0.6)$

ref. 7: \mathcal{K}_h

ref. 7: Kh

 $u_h \in S_h^2$, $\mathbf{y}_h \in \oplus^2 S_{4h}^4$, and $w_h \in S_{4h}^4$.

$\mathbb{M}_{\mathrm{BULK}}(0.4)$

$\mathbb{M}_{\rm BULK}(0.6)$

ref. 8: \mathcal{K}_h

ref. 8: \mathcal{K}_h

 $u_h \in S_h^2$, $y_h \in \bigoplus^2 S_{4h}^4$, and $w_h \in S_{4h}^4$.

	A Locally stabilized space-time IgA	Adaptive IgA 0000000	Numerical results	
www.ricam.oeaw.ac.at	Svetlana Matculevich, Adaptiv	e Space-Time IgA	of Parabolic Evolution Pro	oblems

$\mathbb{M}_{\mathrm{BULK}}(0.4)$

$\mathbb{M}_{\rm BULK}(0.6)$

ref. 9: \mathcal{K}_h

ref. 9: \mathcal{K}_h

 $u_h \in S_h^2$, $y_h \in \bigoplus^2 S_{4h}^4$, and $w_h \in S_{4h}^4$.

	A Locally stabilized space-time IgA 0000000	Adaptive IgA 0000000	Numerical results	
www.ricam.oeaw.ac.at	Svetlana Matculevich, Adaptiv	ve Space-Time IgA	of Parabolic Evolution Pro	oblems

Johann Radon Institute for Computational and Applied Mathematics

Example 2-2. Mesh refinement for $\mathbb{M}_{\mathrm{BULK}}(0.4)$

ref. 1: \mathcal{K}_h

 $u_h \in S_h^2$, $y_h \in \oplus^2 S_{3h}^4$, and $w_h \in S_{3h}^4$.

				Numerical results	
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 2-2. Mesh refinement for $\mathbb{M}_{\mathrm{BULK}}(0.4)$

ref. 2: \mathcal{K}_h

$u_h \in S_h^2$, $\boldsymbol{y}_h \in \oplus^2 S_{3h}^4$, and $w_h \in S_{3h}^4$.

				Numerical results	
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 2-2. Mesh refinement for $\overline{\mathrm{M}}_{\mathrm{BULK}}(0.4)$

ref. 3: \mathcal{K}_h

$u_h \in S_h^2$, $\boldsymbol{y}_h \in \oplus^2 S_{3h}^4$, and $w_h \in S_{3h}^4$.

				Numerical results	
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 2-2. Mesh refinement for $\mathbb{M}_{\mathrm{BULK}}(0.4)$

ref. 4: \mathcal{K}_h

$u_h \in S_h^2$, $\mathbf{y}_h \in \oplus^2 S_{3h}^4$, and $w_h \in S_{3h}^4$.

www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems
				Numerical results	

Example 3: Robustness to problems different singularities

Given data:

Discretisation:

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 www.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

Example 3: Error order of convergence, $\lambda = \frac{3}{2}$

Theoretical (expected) rate $O(h^{3/2})$:

Error order of convergence for for approximations with $u \in S_h^2$ and $u \in S_h^3$.

				Numerical results	
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 3: Error order of convergence, $\lambda = 1$

Theoretical (expected) rate O(h):

Error order of convergence for for approximations with $u \in S_h^2$ and $u \in S_h^3$.

				Numerical results	
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 3: Error order of convergence, $\lambda = \frac{1}{2}$

Theoretical (expected) rate $O(h^{1/2})$:

Error order of convergence for for approximations with $u \in S_h^2$ and $u \in S_h^3$.

				Numerical results	
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 3: Mesh refinement with $\mathbb{M}_{\mathrm{BUL}\mathrm{K}}(0.4)$, $\lambda=rac{3}{2}$

Meshes obtained on the refinement steps 4–7 for $u_h \in S_h^2$.

				Numerical results	
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 3: Mesh refinement with $\mathbb{M}_{\mathrm{BULK}}(0.4)$, $\lambda = 1$

Meshes obtained on the refinement steps 4–7 for $u_h \in S_h^2$.

				Numerical results	
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 3: Mesh refinement with $\mathbb{M}_{\mathrm{BULK}}(0.4)$, $\lambda = \frac{1}{2}$

Meshes obtained on the refinement steps 4–7 for $u_h \in S_h^2$.

				Numerical results	
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Conclusions and roadmap

Conclusions and roadmap

From globally to locally stabalized space-time IgA schemes:

- 1 a priori discretization error estimates
- 2 functional a posteriori discretization error estimates
- 3 adaptive IgA schemes based on global flux reconstruction

Adaptivity + Fast (multilevel) solvers + Parallelization

- 1 improving assembling time, in particular, for the THB-splines
- 2 fast solvers for the system providing optimal flux used in the majorant

 Intro
 Space-time IgA
 Locally stabilized space-time IgA
 Adaptive IgA
 Numerical results
 Conclusions

 www.ricam.oeaw.ac.at
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems
 Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

THANK YOU FOR YOUR ATTENTION!

U. Langer, S. Matculevich, and S. Repin. Adaptive Space-Time Isogeometric Analysis for Parabolic Evolution Problems, arXiv.org, math.NA:1807.05950, 2018 (submitted).

U. Langer, S. Matculevich, and S. Repin. Guaranteed error control bounds for the stabilized space-time IgA approximations to parabolic problems, arXiv.org, math.NA/1712.06017, 2017 (submitted).

U. Langer, S. Matculevich, and S. Repin. Functional type error control for Stabilized space- time IgA approximations to parabolic problems. In I. Lirkov and S. Margenov, editors, Large-Scale Scientific Computing (LSSC 2017), Lecture Notes in Computer Science (LNCS), p. 57–66, Springer-Verlag, 2017.

S. Matculevich. Functional approach to the error control in adaptive IgA schemes for elliptic boundary value problems Journal of Computational and Applied Mathematics, doi.org/10.1016/j.cam.2018.05.029, 2018.

U. Langer, S. Matculevich, and S. Repin. A posteriori error estimates for space-time IgA approximations to parabolic initial boundary value problems, arXiv.org, math.NA/1612.08998, 2016.

Intro Space-time IgA Locally stabilized space-time IgA Adaptive IgA Numerical results Conclusions

Example 1. Comparison of different approaches for flux reconstructions

# ref.	e _Q	$I_{\rm eff}(\overline{\mathrm{M}}^{\mathrm{I}})$	e.o.c. $(e _{s,h})$				
uniform refinem	ent		expected $O(h^2)$				
(a) major	(a) majorant with $m{y}_h := \operatorname{argmin}_{m{y}_h \in m{Y}_h} \overline{\mathrm{M}}$						
2	2.5516e-03	1.07	3.44				
4	1.5947e-04	1.39	2.36				
6	9.9670e-06	1.00	2.09				
8	6.2294e-07	1.01	2.02				
(b) major	rant with $oldsymbol{y}_h = abla_{ imes}oldsymbol{u}_h$	ı _h (implies residu	al-type estimate)				
2	2.5516e-03	4.52	3.44				
4	1.5947e-04	1.91	2.36				
6	9.9670e-06	4.09	2.09				
8	6.2294e-07	6.39	2.02				
(c) major	ant with equilibrated	d fluxes (<mark>implies</mark>	equalibration-type estimate)				
2	2.5516e-03	36.22	3.44				
4	1.5947e-04	869.73	2.36				
7	2.4918e-06	138992.85	2.05				
8	6.2294e-07	247643.30	2.02				
Efficiency of $\overline{\mathbb{N}}$	Efficiency of $\overline{\mathrm{M}}^{\mathrm{I}}$ w.r.t. three approaches of the $\mathbf{y}_h \in \oplus^2 S^3_{5h}$ reconstruction.						

					Conclusions
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 1. Comparison of different approaches for flux reconstructions

	# ref.	e Q	$I_{ m eff}(\overline{ m M}^{ m I})$	e.o.c. $(e _{s,h})$					
a	adaptive refinement ($\sigma=0.4$)								
	majorant with $y_h := \operatorname{argmin}_{y_h \in Y_h} \overline{M}$								
	2 4 6 8	2.5516e-03 2.2734e-04 2.9493e-05 4.8121e-06	1.07 1.41 1.08 1.12	3.42 2.36 2.70 1.56					
	majorant v	with $\boldsymbol{y}_h = \nabla_{\boldsymbol{x}} \boldsymbol{u}_h$ (in	nplies residual-t	ype estimate)					
	2 4 6 8	2.5516e-03 2.2734e-04 2.6218e-05 3.1014e-06	4.52 1.80 3.57 3.43	3.42 1.49 2.43 2.74					
	majorant v	vith equilibrated flux	xes (implies equ	ilibration-type estimate)					
	2 4 6 8	2.5516e-03 2.1893e-04 3.7533e-05 1.0382e-05	30.14 705.39 3663.95 33422.45	3.42 2.10 2.78 2.11					
Effi	Efficiency of $\overline{\mathrm{M}}^{\mathrm{I}}$ w.r.t. three approaches of the $\mathbf{y}_h \in \oplus^2 S^3_{bh}$ reconstruction.								

					Conclusions
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 4. Robustness to non-trivial domains

Given data:

Discretisation:

		Locally stabilized space-time lg/ 0000000			Conclusions ○○○○●○○○○○○
www.ricam.oeaw	.ac.at	Svetlana Matculevich, Adap	tive Space-Time IgA	of Parabolic Evolution Pro	blems

Example 4. Meshes on parametric and physical domains for $M_{ m BULK}(0.6)$

					Conclusions
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 4. Meshes on parametric and physical domains for $M_{ m BULK}(0.6)$

					Conclusions ○○○○●○○○○○
www.ricam.oe	eaw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 4. Meshes on parametric and physical domains for $M_{ m BULK}(0.6)$

					Conclusions
www.ricam.oeaw.ac.at		Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 3. Robustness to solutions with sharp local Gaussian jumps

Example 3-1: 1d + t

$$\Omega = (0, 1), \ T = 1$$

$$u = (x^2 - x)(t^2 - t) \\ e^{-100|(x,t) - (0.8, 0.05)|}$$

$$f = \dots$$

$$u_D = 0$$

Example 3-2:
$$2d + t$$

$$\Omega = (0, 1)^2, \ T = 2$$

$$u = (x^2 - x) (y^2 - y) (t^2 - t)$$

$$e^{-100 |(x, y, t) - (0.25, 0.25, 0.25)|}$$

$$f = \dots$$

$$u_D = 0$$

ntro Space-time IgA Locally stabilized space-time IgA Adaptive IgA Numerical results **Conclusions**

www.ricam.oeaw.ac.at

Svetlana Matculevich, Adaptive Space-Time IgA of Parabolic Evolution Problems

Example 3. Adaptive refinement, $u_h \in S_h^2$

# ref.	<i>∥</i> e <i>∥</i> _Q	$I_{\rm eff}(\overline{\rm M}^{\rm I})$	$I_{\rm eff}(\overline{\rm M}^{\rm I\hspace{-1.5pt}I})$	∥e∥ _{loc,h}	e _∠	$I_{\rm eff}({\rm I\!\!E}{ m d})$	e.o.c. (∭e∭ _{loc,h})	e.o.c. (∭e∭∠)	
(a) <i>u_h</i> ((a) $u_h \in S_h^2$, $\mathbf{y}_h \in \oplus^2 S_h^3$, and $w_h \in S_h^3$								
2	3.1311e-04	2.85	1.55 1.73	3.1335e-04	5.6510e-02 3.1506e-02	1.00	17.71 6 49	8.64 3.60	
5 7	2.2033e-05 5.2517e-06	2.27 2.38	1.36 1.22	2.2042e-05 5.2526e-06	1.4796e-02 7.2473e-03	1.00 1.00	5.87 2.41	3.59 1.27	
(b) <i>u_h</i> ($\in S_h^2, \mathbf{y}_h \in \oplus^2$	S_{2h}^6 , and w_h	$\in S_{2h}^6$						
2	2.7623e-04	9.39	2.38	2.7647e-04	5.4452e-02	1.00	15.35	7.24	
3	1.1419e-04	4.62	1.79	1.1446e-04	3.1695e-02	1.00	6.27	3.85	
5	2.2089e-05	2.04	1.13	2.2099e-05	1.4911e-02	1.00	5.07	3.04	
7	5.2825e-06	2.45	1.24	5.2837e-06	7.1577e-03	1.00	2.35	1.24	

 $\mbox{Efficiency of } \overline{\mathrm{M}}^{\mathrm{I}} \mbox{, } \overline{\mathrm{M}}^{\mathrm{II}} \mbox{, } \overline{\mathrm{M}}^{\mathrm{II}} \mbox{, } \overline{\mathrm{M}}^{\mathrm{II}} \mbox{, } and \mbox{ I\!\!I}d.$

Example 3. Error order of convergence for $u_h \in S_h^2$

The majorant and e.o.c. for (a) $y_h \in \oplus^2 S_h^3$, and $w_h \in S_h^3$ and (b) $y_h \in \oplus^2 S_{2h}^6$, and $w_h \in S_{2h}^6$.

					Conclusions
www.ricam.oe	aw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 3-1. Mesh refinement for $\mathbb{M}_{\mathrm{BULK}}(0.6)$

Meshes obtained on the refinement steps 4-6.

					Conclusions ○○○○○○○●○
www.ricam.oe	eaw.ac.at	Svetlana Matculevich, Adaptive	Space-Time IgA	of Parabolic Evolution Pro	blems

Example 3-2. Mesh refinement for $\mathbb{M}_{\mathrm{BULK}}(0.6)$

Meshes obtained on the refinement steps 1–3 $u_h\in S_h^2,$ ${\bf y}_h\in \oplus^2 S_h^3$ and $w_h\in S_h^3$

