Computer Science Education 0899-3408/01/1103-0247$16.00
2001, Vol. 11, No. 3, pp. 247-260 © Swets & Zeitlinger

An Empirical Evaluation of Using Constructive Classroom
Activities to Teach Introductory Programming

Mark J. Van Gorp and Scott Grissom
Computer Science and Information Systems, Grand Valley State University, Allendale, MI,
USA

ABSTRACT

Computer science teaching is often based upon the traditional lecture format. However,
this methodology may not be the best way to help many students actively understand underlying
concepts. This paper explores an alternative pedagogical approach that emphasizes constructive
and collaborative learning in CS1 classrooms. After briefly discussing constructivism and
providing examples of constructivist techniques in CS1, empirical research results are provided.
These results arise from a study that compares different CS1 sections that utilized the
techniques at varying frequencies. A positive correlation was found between frequency and
mean final exam scores. However, no pair-wise differences between sections were statistically
significant. These outcomes and others are discussed in addition to future research design
implications.

INTRODUCTION

Teaching and learning in today’s computer science classroom is generally
based upon two fundamentally different theoretical models: objectivism and
constructivism. Objectivists believe that learning often occurs when students
listen to an instructor’s explanation, engage in reinforced practice, and
respond to external motivation (Fosnot, 1996; Skinner, 1953). Meanwhile,
assessment of learning occurs by measuring observed and quantifiable
behavioral outcomes on pre-defined tasks (Fosnot, 1996). Objectivism often
manifests itself in teacher-centered and teacher-controlled classrooms.
Constructivists, on the other hand, focus more on the learning and
experiences of the student. Learning requires the student to actively construct

Correspondence: Scott Grissom, Computer Science Department, Grand Valley State University,
1 Campus Dr, Allendale, MI 49401-9403, USA. Tel: +1-616-895-2088, Fax: +1-616-895-2106,
E-mail: grissom@gvsu.edu

248 MARK J. VAN GORP AND SCOTT GRISSOM

personal meaning and understanding while thinking about previous
experiences and considering alternative perspectives held by others (Bednar,
Cunningham, Duffy, & Perry, 1992). Assessment of that learning evaluates the
effective functioning of a learner in a targeted discipline as well as the ability
to defend and explain decisions through developed metacognitive skills
(Bednar et al., 1992).

Although, constructivism became well-known as a learning theory around
the late 1980s and early 1990s, aspects of it are not new as they rest upon the
earlier work of Dewey, Piaget, and Vygotsky (Fosnot, 1996; Phillips, 1995;
Gadanidis, 1994). Even though presenting an exact definition of constructi-
vism is difficult and likely impossible (Phillips, 1995), constructivist class-
rooms are often viewed as problem-solving environments manifested through
three C’s: context, construction, and collaboration. First, students are to be
given problems entrenched in authentic and perhaps simplified contexts. This
will provide internal motivation for the student as opposed to external
motivation that behavioral objectivists would emphasize. Second, students are
to construct knowledge based upon meaningful activities: they cannot be
given this knowledge. Lastly, students often collaborate with their peers. This
aids the knowledge construction process, as students must seek to examine
alternative perspectives on problem solutions and thus possibly re-construct
their own perspectives and solutions.

CONSTRUCTIVISM IN COMPUTER SCIENCE
EDUCATION LITERATURE

Based upon the problem solving nature of computer science, it is compelling
to use constructivism in helping students learn the discipline. However, as
Ben-Ari (1998) notes, and as we also concluded, there are relatively few
empirical articles based upon constructivism in computer science education
when compared to another field such as mathematics education. Truly,
numerous studies such as Kim, Sharp, and Thompson (1998) have shown
constructivist value in mathematics reform.

Further, other positive outcomes are noted when one considers the influence
of constructivist elements such as collaboration and cooperation in the
computer science education literature. For example, Ramsey, Rada, and
Acquah (1994) write that collaborative learning for computer science students
can be effective when a well-formulated methodology for working exists.

EVALUATION OF CONSTRUCTIVE ACTIVITIES 249

Keeler and Anson (1995) found that cooperative learning significantly
enhanced learning performance and student retention in a computer literacy
course. Additionally, authors such as Gorriz and Medina (2000) and McGrath
(1990) note that girls in particular excel in those computing environments
where learning is collaborative.

CREATING COLLABORATIVE AND CONSTRUCTIVE
ENVIRONMENTS

When thinking about the value of constructive and collaborative learning
environments in computer science, we decided to employ constructive group
work in our CS1 classes. The goal is for students to actively think, collaborate,
and construct problem solutions instead of remaining recipients of purely
lectured information. Many of our activities seek to mimic what a computer
scientist might do and include the following.

Code Walkthroughs

In this activity, students step through existing code and predict the output. This
helps students practice and better understand flow of control. Responsibilities
can be assigned based on the code that is being reviewed. For example,
consider a class session on parameter passing that distinguishes between
passing by value and passing by reference. We provide a number of methods
that have four parameters. Some are passed by reference and some are passed
by value. Each group member is responsible for tracing through the code for
one parameter. This division of labor helps to keep everyone involved instead
of the strongest student taking control of the group.

Writing Code
Another activity is to have groups write code to solve a small problem. For
example, “write pseudo code to simulate 500 coin tosses and print the number
of heads.” It is important that we walk around the room and observe the
groups working together. We provide guidance when appropriate but prefer to
remain quiet and let group members answer their own questions. Groups are
motivated to write a complete and accurate solution since they may be called
to share their solution with the rest of the class.

A variation of writing code during class is to assign one or two small
problems for students to solve before coming to class. They bring their typed

250 MARK J. VAN GORP AND SCOTT GRISSOM

solutions to class and break into their groups. Group members walk through
each other’s code to compare solutions and then collaborate on a group solution.
Individual solutions as well as the group solution are then handed in. With this
technique, all students must think about the problem on their own before
coming to class and also understand the ways others have solved the problem.

Scaffolding

This educational concept recognizes that novices need additional support to
solve a problem. The idea is simple but important to computer science
pedagogy as learning language syntax, code flow, data representation, and
appropriate design are daunting tasks for novices.

We use scaffolding in various ways. For example, we split students into
groups of two and give them code that solves a given problem. The code in this
example is the scaffolding that students will build upon. We then have them
insert comments to describe the semantics of the code. Alternatively, we may
give comments (the scaffolding) to the groups that describe an algorithm.
Students then write code that corresponds to the comments. Of course, the
ultimate goal is for students to generate all the code and think about efficient
solutions, but novices (especially CS1 students) need support in their initial
programming endeavors.

Code Debugging

A fifth activity is to give groups of students syntactically and logically buggy
code. In this way all students can contribute to finding errors. For example,
some students, who may be struggling with the course, will find the more
obvious syntax and logic errors, while others are challenged to find more
subtle errors that are not easily recognized. Sometimes students are asked to
do this individually and then split up into groups and share results. At times,
constructive thinking is promoted further when students disagree on what is or
is not an error in the code.

Lecture Note Reconstruction

We have used this technique in class sessions of 50 min as well as 75 min.
Here, we ask students to not take notes during a mini lecture but instead to pay
close attention. After 15 min of lecture they have a few minutes to reconstruct
an outline of the lecture from memory. They then meet in their groups and
refine their notes further. This is a great exercise to help students improve their
listening skills (Bonwell, 1996).

EVALUATION OF CONSTRUCTIVE ACTIVITIES 251

For example, we deliver a lecture on sorting algorithms that compares
insertion sort, selection sort, and bubble sort. Students are instructed to not
take any notes and simply observe us demonstrate each algorithm. We have
large cardboard cards with numbers on them that we manipulate as if they are
integers in an array. After ‘seeing’ the algorithms in action, students write
descriptions in their own words.

Even though these activities seem to promote a pleasant pedagogical
variety in a CS1 classroom, we could not conclude if these activities were
actually making a difference in the learning of our CS1 students. Thus, we
decided to compare the cognitive and affective differences of students whose
instructors used activities such as these with students whose instructors
maintained more traditional lecture environments.

METHOD

Design of the Investigation

Six sections of a CS1 course participated. Each section started with approx-
imately 32 students and was taught by a different instructor. Instructors used
their natural teaching style with respect to the use of constructive activities in
the classroom. Neither the students nor instructors were aware of the study
until the end of the term.

The 15-week course met four times per week including three 1 hr lectures
and a 2hr closed laboratory. We used Java to introduce the standard CS1
contents such as variables, selection statements, repetition statements,
methods, and objects. Students completed six programming projects, two
midterm exams, and one final exam.

The course was coordinated to keep the content consistent between each
section. All sections used a common syllabus and instructors kept in contact
with each other via e-mail and impromptu conversations in the hallway. The
intent was to have all sections cover the same material at about the same pace.
Programming projects were identical for all sections. The midterm exams
covered the same material but were not identical. Instructors wrote their own
midterm exams. For consistency, all sections took an identical final exam at
the same time on a Saturday morning.

Materials
We developed a survey to measure the student’s perceived frequency of
constructive activities performed in the classroom (Appendix). The brief

252 MARK J. VAN GORP AND SCOTT GRISSOM

instructions included examples of activities such as hands-on exercises,
writing code, reading code and other group activities. There were only two
questions.

The first question was “Which of the following best describes your
classroom this semester (during lecture, not lab time)?”’ The five choices for
responses were: (1) no classroom activities at all, (2) a few activities through-
out the course, (3) activities were performed about once per week, (4) almost
every day, and (5) the course was entirely activity based with no traditional
lecturing.

The second question was “If you completed any of these activities, how
well do you think they helped you learn the subject?”” The five choices for
responses were: (1) poor, (2) fair, (3) OK, (4) good, and (5) excellent.

Procedure

Students completed the survey 2 weeks before the course concluded. Instruc-
tors also completed the survey. The instructors’ perceptions of classroom
activities generally matched their students’ average response. Each section
was assigned to one of four groups based upon the average student response to
the first question. This was not difficult since responses clustered around one
or two categories within each section. We identified two sections that had no
constructive activities, one that rarely had activities, two sections that had
activities about once per week, and one section that had activities almost every
day.

Students completed the final exam on a Saturday morning. Instructors
worked together afterwards to grade all of the exams. Each instructor was
responsible for grading one page of the exam. Student names were hidden so
instructors were grading an anonymous exam. This process reduces instructor
bias during grading and insures that exams are graded consistently.

We recorded final exam grades for each student. These grades were the
most reliable data since all students completed the same exam. This was not
the case with the two earlier midterm exams. Programming project grades
were not considered reliable because instructors graded their own projects and
perhaps used different grading criteria.

Students completed a campus-mandated evaluation form at the end of the
course. Three questions were selected for this study that best represented their
attitude toward the course and instructor. Student evaluation responses and
exam grades were collected for each student and recorded in a spreadsheet.
Random letters were assigned to each section regardless of which category

EVALUATION OF CONSTRUCTIVE ACTIVITIES 253

they were assigned to with respect to constructive activities. During initial
analysis we were looking for differences between any sections. This strategy
helped to keep the analysis objective.

One measure of class performance is to consider the WDF rate (Chase &
Okie, 2000). This is a measure of the number of students that withdraw from
the course (W) or earn a low grade (D or F). These students will not be able to
continue to CS2 without repeating the current course. We calculated the WDF
rate for each section based on the original enrollment. Final grade reports have
a W grade for students who withdraw from the course after the first week of
the term.

RESULTS

Final Exam Grades
There was a noticeable linear improvement of average final exam grades
(Figure 1). The highest possible grade was 100. Average grades increased as
the frequency of constructivist activities increases. Upon further analysis, we
found that a slightly positive and significant correlation did exist (p < .05,
N=147). Spearman’s tho was used to test for correlation since we did not
assume normality of underlying data (the scores of a few sections were
slightly skewed). Thus, we chose the more reliable non-parametric test.

To determine if a significant difference occurred between any of the
sections, we used the non-parametric Kruskall-Wallis test. This test is similar
to a one-way Analysis of Variance, but instead performs its calculations by

Final Exam Grades

80
60
40
20

never never rarely weekly weekly daily
(65.2) (69.8) (70.3) (70.3) (73.4) (784)

Fig. 1. Final exam grades by frequency of constructive activities.

254 MARK J. VAN GORP AND SCOTT GRISSOM

Table 1. Test for Significant Differences Among Exam Scores Based Upon
Section.

Kruskall-Wallis mean rank scores Kruskall-Wallis significance

Frequency of activities N Final exam Final exam
Mean rank

Never 27 60.44 Chi-Square 8.188

Never 26 70.58 df 5

Rarely 28 7273 Asymp. .146

Weekly 22 7148 significance (p)

Weekly 22 178.70

Daily 22 94.11

Total 147

ranking each student’s score. Thus, a mean rank score is shown in Table 1
rather than a mean score. As with Spearman’s rho, this test does not assume
underlying normality of data.

There was a large difference between a Never section (60.44) and the Daily
section (94.11), however, this difference was not statistically significant
(p=.146). Thus, we could not statistically conclude that frequency of
constructive activities did account for a difference in exam grades.

Withdrawal Rate

The WDF rate for each section is shown in Fig. 2. There is no apparent
relationship between the WDF rate and the frequency of constructive
activities.

WDF Rate

40
30
20
10

never never rarely weekly weekly daily
(33%) (21%) (22%) (30%) (33%) (35%)

Fig. 2. 'WDF rate by frequency of constructive activities.

EVALUATION OF CONSTRUCTIVE ACTIVITIES 255

Do Classroom Activites Help You Learn?

o = N W b

rarely (3.1) weekly (2.5) weekly (3.9) daily (3.5)

Fig. 3. Average student responses.

Subjective Assessment

Students were asked how well they thought classroom activities helped them
learn the material (1: poor and 5: excellent). Average responses for sections
that had some level of activity are shown in Fig. 3. There is no apparent
correlation with frequency of activities and average student response.

Student Satisfaction
Responses to the student survey at the end of the term were consistent within
each section (Figure 4). However, there was no apparent correlation with
student satisfaction and frequency of classroom activity.

We selected the following three questions as a representative subset of the
survey.

(1) The course was taught well (1: strongly disagree, 5: strongly agree).

(2) I enjoyed taking the course.

(3) I have benefited by having this instructor.

Student Responses

4 O taught well?

2 B enjoyed course?
O benefited?
0

never never rarely weekly weekly daily

Fig. 4. Student satisfaction with the course and instructor.

256 MARK J. VAN GORP AND SCOTT GRISSOM

DISCUSSION

In this Section we discuss the results, consider the experimental design, and
make recommendations for further investigation.

Results

The slightly positive correlation among final exam grades and frequency of
constructive activities is interesting. For example, this could suggest that a
variety of constructive activities help students understand the material better
and may hold their attention to the task longer. Bonwell and Eisen (1991)
suggest that student attention wanes after 10-20 min. Providing scheduled
activities throughout a lecture may increase attention and therefore increase
comprehension.

However, correlation does not imply cause and effect, and results from our
study do not allow us to conclude any dependence of final exam scores upon
frequency of collaborative and constructive activities. This could be due to the
fact that we need to better structure some of our group activities (Slavin,
1990). One must also consider the other factors involved in constructivism
such as promoting authentic contexts. Because we gave the same simplified
authentic projects to all students, this factor may have negated some of the
effects of classroom collaboration.

The WDF rate did not provide much insight for this study. One concern is
that the WDF rate varied considerably even with the same instructor. For
example, one instructor taught three sections of this course (only one was
randomly chosen to be included in this study). The WDF rate for his three
sections were 22, 33, and 38%. A second concern with the WDF rate is that
with small classes only a few students will greatly affect results. Sections
started with approximately 32 students. The two extremes in our study were 7
(21%) and 11 students (35%) who withdrew or earned a poor grade. This is
only a difference of four students, which can be contributed to a number of
factors such as student workload, time of day the course is offered, and any
number of other factors not controlled by this study.

Experimental Design: Present and Future

It is challenging to implement a sound experimental design in a college
teaching environment. There are almost always differences that are difficult to
control such as teaching style, grading criteria, and size of the class. The
strength of this study was that six sections taught by different instructors

EVALUATION OF CONSTRUCTIVE ACTIVITIES 257

covered the same material, students completed the same final exam, and care
was taken to consistently grade the exams across all sections. Many
institutions do not have the luxury of offering six sections of the same course
with different instructors.

One potential bias of the data is that all sections had a weekly lab session,
which involved programming activities. This level of classroom activity, even
though it was during lab time, may have affected the outcomes. An alternative
design could compare the effect of constructive activities by having control
sections with no lab time. Another option could include a group whose
classroom work is completely based upon developing programs solely in the
lab with no lecture. This would more authentically simulate the work of a
computer scientist and consequently align more with constructivist beliefs.
Our students often comment that they learn the most in a lab. This is not
surprising. Not only they are getting feedback on their thinking from their
peers and the instructor, but they are also getting direct feedback from
computer-generated errors. These are their own errors and not ones made up
by the instructor.

Our study did not account for programming knowledge of incoming
students. Future research designs will need to control for variables such as
these. Other factors to consider are gender, overall grade point average, and
age level of the student. One could perform a multiple factor analysis of
variance that investigates how grouped variables such as gender and frequency
of collaborative activities may affect final exam outcomes.

In our study, the six instructors collectively wrote the final exam early in the
term. One might argue that exam grades were affected by how closely each
instructor “‘taught to the exam”. One improvement would be for a third party
to write the exam. Instructors would have to be informed of the general
content but would not be familiar with the specific questions.

Lastly, one could consider a qualitative research design. This form of
inquiry emphasizes the understanding of collected data rather than the
reduction of that data to mere statistics. Qualitative researchers believe that a
reductionist approach may miss important meaning generated by underlying
data. A researcher using this design could interview students in a
constructivist-based CS1 classroom, interview the instructor, observe lab
and classroom activities, analyze student learning on open-ended project or
exam questions, and subsequently infer themes that may otherwise not be
accounted for in a quantitative design. Because classroom dynamics are
extremely complex, the interaction of those dynamics may be difficult to

258 MARK J. VAN GORP AND SCOTT GRISSOM

control in a concise quantitative design. Indeed, the creation of the Logo
programming language was based upon Seymour Papert’s observation of
children learning with computers. It was not based solely upon careful
analysis of quantitative outcomes.

CONCLUSION

The outcome of this study supports the notion that collaboration and
constructive activities can aid learning, whether statistical or not, in a
computer science classroom. However, measures such as WDF rates may not
be affected at all. Acknowledging that it takes time to adjust pedagogy, it is
compelling to refine these techniques and perform studies based upon the
other research designs presented. Just as aspects of the computer science
discipline frequently undergo change, computer science educators must also
be willing to explore change in their teaching and philosophy of learning.

ACKNOWLEDGEMENTS

We appreciate the willingness of our colleagues to provide access to their
classrooms: Jerry Scripps, Scott Lis, Ken Johnson, and Roger Ferguson. We
also want to thank Dr. Paul Stephenson for his assistance with the statistical
analysis. Finally, we acknowledge the contributions of the students who made
this study possible.

REFERENCES

Bednar, A.K., Cunningham, D., Duffy, T.M., & Perry, J.D. (1992). Theory into practice: How
do we link? In T.M. Duffy & D.H. Jonassen (Eds.), Constructivism and the technology of
instruction: A conversation (pp. 17-34). Hillsdale, NJ: Lawrence Erlbaum Associates.

Ben-Ari, M. (1998). Constructivism in computer science education. The Proceedings of
the Twenty-ninth SIGCSE Technical Symposium on Computer Science Education
(pp- 257-261).

Bonwell, C.C. (1996). Enhancing the lecture: Revitalizing a traditional format. In T.E.
Sutherland & C.C. Bonwell (Eds.), Using active learning in college class: A range of
options for faculty. San Francisco: Jossey-Bass.

Bonwell, C.C., & Eison, J.A. (1991). Active learning: Creating excitement in the classroom.
ASHE-ERIC Higher Education Report No. 1. Washington, DC: The George Washington
University, 1991.

EVALUATION OF CONSTRUCTIVE ACTIVITIES 259

Chase, J.D., & Okie, E.G. (2000). Combining cooperative learning and peer instruction in
introductory computer science. SIGCSE Bulletin, 32, 372-376.

Fosnot, C.T. (Ed.). (1996). Constructivism: Theory, perspectives, and practice. New York, NY:
Teachers College Press.

Gadanidis, G. (1994). Deconstructing constructivism. The Mathematics Teacher, 87, 91-97.

Gorriz, C.M., & Medina, C. (2000). Engaging girls with computers through software games.
Communications of the ACM, 43, 42-49.

Keeler, C.M., & Anson, R. (1995). An assessment of cooperative learning used for basic
computer skills instruction in the college classroom. Journal of Educational Computing
Research, 12, 379-393.

Kim, M.K., Sharp, J.M., & Thompson, A.D. (1998). Effects of integrating problem solving,
interactive multimedia, and constructivism in teacher education. Journal of Educational
Computing Research, 19, 83—108.

McGrath, D. (1990). Eight ways to get beginners involved in programming. The Computing
Teacher, 18, 19-21.

Phillips, D.C. (1995). The good, the bad, and the ugly: The many faces of constructivism.
Educational Researcher, 24, 5-12.

Ramsey, P, Rada, R., & Acquah, S. (1994). Collaborative learning for computer science
students. Journal of Computers in Mathematics and Science Teaching, 13, 377-389.

Skinner, B.F. (1953). Science and human behavior. New York, NY: Free Press.

Slavin, R.E. (1990). Cooperative learning: Theory, research and practice. Englewood Cliffs,
NJ: Prentice-Hall.

Appendix
CS 162 Survey

We are conducting a survey of teaching methods used in CS 162. For this
survey, consider the definition of ‘classroom activities’ to be working alone or
in small groups to solve a problem during class. The instructor is not lecturing
during these periods. Which of the following best describes your CS 162
classroom this semester (during lecture, not lab time). Your response should
be anonymous.

Pick one:

The instructor lectures and responds to student questions. There are no
‘classroom activities’.

In addition to the instructor’s lecture, we completed ‘classroom
activities’ (alone or in groups) on a few occasions during the semester.

260 MARK J. VAN GORP AND SCOTT GRISSOM

In addition to the instructor’s lecture, we completed ‘classroom
activities’ (alone or in groups) about once per week.

In addition to the instructor’s lecture, we completed ‘classroom
activities’ (alone or in groups) on most days.

The instructor never lectures. We completed ‘classroom activities’
(alone or in groups) every day and all day.

If you completed any of these ‘classroom activities’ (not during lab), how well
do you think they helped you learn the subject?

poor fair OK good excellent

